МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система конструкторской документации

ЭЛЕКТРОННАЯ СТРУКТУРА ИЗДЕЛИЯ

Общие положения

Unified system for design documentation. Product electronic structure. General

МКС 01.100 ОКСТУ 0002

Дата введения — 2006—09—01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—97 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, применения, обновления, отмены»

Сведения о стандарте

- 1 РАЗРАБОТАНЫ Федеральным государственным унитарным предприятием Всероссийским научно-исследовательским институтом стандартизации и сертификации в машиностроении (ВНИИНМАШ), Автономной некоммерческой организацией Научно-исследовательским центром CALS-технологий «Прикладная логистика» (АНО НИЦ CALS-технологий «Прикладная логистика»)
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 23 от 28 февраля 2006 г.)

За принятие проголосовали:

Краткое наименование страны	Код страны по МК	Сокращенное наименование
по МК (ИСО 3166) 004—97	(ИСО 3166) 004—97	национального органа по стандартизации
Азербайджан	AZ	Азстандарт
Армения	AM	Минторгэкономразвития
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Кыргызстан	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Российская Федерация	RU	Федеральное агентство по техническому
		регулированию и метрологии
Таджикистан	TJ	Таджикстандарт

Туркменистан	TM	Главгосслужба «Туркменстандартлары»
Узбекистан	UZ	Узстандарт
Украина	UA	Госпотребстандарт Украины

4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 июня 2006 г. № 119-ст межгосударственный стандарт ГОСТ 2.053—2006 введен в действие в качестве национального стандарта Российской Федерации 1 сентября 2006 г.

5 ВВЕДЕН ВПЕРВЫЕ

Информация о введении в действие (прекращении действия) настоящего стандарта публикуется в указателе «Национальные стандарты».

Информация об изменениях к настоящему стандарту публикуется в указателе (каталоге) «Национальные стандарты», а текст изменений—в информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе «Национальные стандарты»

1 Область применения

Стандарт устанавливает общие требования к выполнению электронной структуры изделий машиностроения и приборостроения.

На основе настоящего стандарта могут быть разработаны стандарты, учитывающие особенности выполнения и применения электронной структуры изделия на различных стадиях жизненного цикла на изделия конкретных видов техники в зависимости от их специфики.

2 Нормативные ссылки

- В настоящем стандарте использованы ссылки на следующие межгосударственные стандарты:
- ГОСТ 2.051—2006 Единая система конструкторской документации. Электронные документы. Общие положения
- ГОСТ 2.102—68 Единая система конструкторской документации. Виды и комплектность конструкторских документов
 - ГОСТ 2.103—68 Единая система конструкторской документации. Стадии разработки
 - ГОСТ 2.104—2006 Единая система конструкторской документации. Основные надписи
- ГОСТ 2.113—75 Единая система конструкторской документации. Групповые и базовые конструкторские документы
- ГОСТ 2.201—80 Единая система конструкторской документации. Обозначение изделий и конструкторских документов
- ГОСТ 2.503—90 Единая система конструкторской документации. Правила внесения изменений

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по указателю «Национальные стандарты», составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и сокращения

3.1 Термины и определения

- В настоящем стандарте применены следующие термины с соответствующими определениями:
- 3.1.1 **структура изделия:** Совокупность составных частей изделия и связей между ними, определяющих входимость составных частей*¹⁾.

3.1.2 входимость: Понятие, характеризующее использование составных частей изделия в

¹⁾ Здесь и далее знаком «*» отмечены пункты, к которым даны комментарии.

составе конечного изделия или/и его составных частей*.

- 3.1.3 **применяемость:** Характеристика связи, показывающая, при каких условиях данная составная часть использована в конечном изделии или другой составной части.
- 3.1.4 электронная структура изделия: Конструкторский документ, содержащий состав сборочной единицы, комплекса или комплекта и иерархические отношения (связи) между его составными частями и другие данные в зависимости от его назначения.
- 3.1.5 **информационный объект:** Совокупность данных, обладающая атрибутами (свойствами) и методами, позволяющими определенным образом обрабатывать данные*.
- 3.1.6 модель данных: Способ представления данных информационной модели в вычислительной среде.
- 3.1.7 **информационная модель** (изделия): Совокупность данных и отношений между ними, описывающая различные свойства реального изделия, интересующие разработчика модели и потенциального или реального пользователя.
- 3.1.8 **контекст:** Организационная совокупность элементов данных и связей между ними, созданная в рамках информационной модели для группирования и представления (в т. ч. визуального отображения) необходимого состава информации с определенной целью.

3.2 Сокращения

В настоящем стандарте использованы следующие сокращения:

ЭСИ — электронная структура изделия;

ИО — информационный объект;

ЖЦИ — жизненный цикл изделия;

СЧ — составная часть (изделия);

ОБДИ — общая база данных об изделии;

САПР — система автоматизированного проектирования.

4 Основные положения

- 4.1. ЭСИ конструкторский документ, выполняемый только в электронной форме и предназначенный для использования в компьютерной среде*.
- 4.2 ЭСИ является обобщающим документом, консолидирующим технические данные об изделии, и предназначена для организации информационного взаимодействия между автоматизированными системами.
 - 4.3 ЭСИ используют для:
 - представления информации о составе изделия и об иерархии СЧ;
- представления интегрированной разнотипной информации о свойствах (характеристиках) изделия и его СЧ:
 - представления вариантов состава и структуры изделия;
- организации и структурирования проектной и рабочей конструкторской документации на изделие;
- представления информации о правилах применяемости и заменяемости (в том числе взаимозаменяемости) СЧ;
 - классификации и формирования обозначений изделия и его составных частей;
 - управления разработкой изделия;
- документирования изменений в конструкцию изделия и его СЧ, их свойства (характеристики) и соответствующую документацию;
- получения текстовых документов на изделие и его СЧ (детали, сборочные единицы, комплексы, комплекты) в электронной и/или бумажной формах*.
- 4.4 Состав и способы представления технических данных в ЭСИ определяются назначением ЭСИ, стадией (этапом) ЖЦИ и моделью данных. Литерность ЭСИ определяется низшей из литер по ГОСТ 2.103, указанных в документах, ассоциированных с определяемыми изделиями или их СЧ, кроме документов покупных изделий.
- 4.5 На основе ЭСИ могут быть сформированы вторичные документы (как отчеты), выполняемые, как правило, в виде текстовых документов, содержащих текст, разбитый на графы. Номенклатура формируемых видов документов по ГОСТ 2.102. При необходимости допускается формировать другие виды документов. Номенклатуру, техническое содержание и форму выполнения этих документов регламентирует разработчик. На изделия, разрабатываемые по заказу Министерства обороны, эти документы должны быть согласованы с заказчиком (представительством заказчика)*.
- 4.6 ЭСИ формируется, как правило, автоматизированным способом на основе информации, хранящейся в ОБДИ*.

- 4.7 Иерархия составных частей в ЭСИ определяется разработчиком в зависимости от конструкции изделия, технологии производства и условий эксплуатации и формируется на основе описания отношений между:
 - оригинальными СЧ, входящими в СЧ высшего уровня;
 - заимствованными СЧ, применяемыми в других СЧ без доработки;
- заимствованными СЧ, применяемыми с доработкой для создания других СЧ и задания специфических свойств и/или ограничений для этих отношений;
 - прочими СЧ (стандартными изделиями, покупными изделиями и др.).
- 4.8 Информацию содержательной части ЭСИ представляют в визуальной форме (например, на экране дисплея), как правило:
- в форме, отображающей структуру изделия в виде графа, вершины которого соответствуют составным частям изделия (сборочным единицам, комплексам, комплектам, деталям), а ребра определяют связи между составными частями:
- в форме многоуровневого списка, в котором верхний уровень образуют СЧ, входящие в состав изделия непосредственно (СЧ прямого вхождения), второй уровень СЧ, входящие в состав СЧ первого уровня, третий уровень СЧ, входящие в состав СЧ второго уровня и т. д. вплоть до уровня, на котором СЧ полагаются далее неделимыми.

Примеры способов визуализации приведены в приложении Б.

5 Общие требования к выполнению электронной структуры изделия

- 5.1 Общие требования к выполнению ЭСИ по ГОСТ 2.051. Содержательную часть ЭСИ выполняют в соответствии с требованиями настоящего стандарта. Реквизитную часть выполняют по ГОСТ 2.104*.
- 5.2 Содержательная часть ЭСИ определяет состав сборочной единицы, комплекса или комплекта, связи его СЧ (входимость) и другие данные, которые могут быть связаны (ассоциированы) с изделием или его СЧ, и выполняется в виде набора данных, представляющих совокупность ИО. Для единообразного представления ЭСИ в компьютерной среде используют модели данных ИО, регламентированные ИСО 10303 [1] [8]*.
- 5.3 Для единообразного формального описания ЭСИ следует использовать язык описания моделей данных, регламентированный ИСО 10303-11*.
 - 5.4 Содержательную часть ЭСИ выполняют следующими способами:
 - в форме обменного файла согласно ИСО 10303-21.
 - в форме базы данных с организацией доступа согласно ИСО 10303-22*.
- Обе формы выполнения содержательной части ЭСИ представляют конечное описание в форме файла(ов) и обеспечивают, при необходимости, взаимное преобразование информации с помощью соответствующих программных средств.
- 5.5 В зависимости от назначения ЭСИ, сложности изделия и используемой модели данных содержательная часть состоит из одного или более файлов. Реквизитную часть ЭСИ оформляют в установленном порядке на содержательную часть в целом.
- 5.6 ЭСИ формируют с помощью соответствующих программных средств автоматически или полуавтоматически на основе ИО, содержащихся в ОБДИ, при этом:
- 5.6.1 Состав изделия представляют полным списком всех СЧ, входящих в структуру изделия на всех уровнях ее иерархии.
 - 5.6.2 Иерархию СЧ изделия представляют посредством ИО, отображающих связи между СЧ.
- 5.6.3 Правила применяемости и заменяемости (в том числе взаимозаменяемости) СЧ изделия представляют посредством присоединения к ИО, отображающим связи между составными частями, ИО, отображающими связи в соответствии с ИСО 10303-41.
- 5.6.4 Свойства представляют посредством присоединения к ИО, отображающим изделие и/или его составные части, ИО, описывающего вид свойства, единицу измерения и значение.

Примеры:

Вид свойства:	Единица	Значение
	измерения	свойства
1) габаритный размер по оси Х	мм	1000
2) macca	кг	500
3) цвет	б/p	красный

Допускается использовать табличное представление свойств.

Пример:

Вид свойства:		Единица	Значение
		измерения	свойства
1) габаритный размер:	\boldsymbol{X}	мм	1000
	Y	мм	1200
	Z	мм	800

- 5.6.5 Документирование внесения изменений в конструкцию изделия и его СЧ выполняют посредством присоединения к ИО, отображающим изделие или его СЧ, и/или ИО, отображающим связи изделия или его СЧ, соответствующих ИО, описывающих виды извещений об изменении и их движение в процессе утверждения.
- 5.6.6 Варианты состава и структуры изделия представляют посредством правил применяемости тех или иных СЧ в модификациях и исполнениях соответствующего изделия (см. 5.6.3).
- 5.6.7 Документирование управления разработкой изделия выполняют посредством присоединения к ИО, отображающим изделие, его СЧ и ассоциированным с ними документам, ИО, описывающих их обращение в течение разработки, согласования и утверждения.
- 5.6.8 Внесение изменений в конструкцию изделия и его СЧ, их свойства (характеристики) и документацию производится:
 - созданием новых версий ИО и заменой предыдущих версий ИО на новые;
- добавлением в ЭСИ новых ИО и правил применяемости, ограничивающих действие существующих и новых ИО.

Способ внесения изменения определяется типом изменяемого ИО. Оформление новой версии ЭСИ и ввод ее в обращение — в соответствии с ГОСТ 2.503.

6 Общие требования к техническому содержанию электронной структуры изделия

- 6.1 Для одного и того же изделия, в зависимости от стадии ЖЦИ и назначения ЭСИ, могут разрабатываться и применяться разновидности ЭСИ, выполняемые с целью определения конкретных аспектов описания изделия. Номенклатуру, техническое содержание и соответствующую ему модель данных ЭСИ устанавливает разработчик, если это не определено в техническом задании.
- 6.2 Различают, как правило, следующие основные разновидности ЭСИ: функциональную, конструктивную, производственно-технологическую, физическую, эксплуатационную и совмещенную*.

Функциональная ЭСИ предназначена для определения назначения изделия и его СЧ и предъявляемых к ним функциональных требований. Как правило, функциональная ЭСИ выполняется на стадии разработки технического предложения на изделие.

Конструктивная ЭСИ предназначена для отображения конкретных технических решений, определяющих конструкцию комплексов, сборочных единиц и комплектов. Как правило, конструктивная ЭСИ выполняется на стадиях разработки эскизного проекта, технического проекта и рабочей конструкторской документации.

Производственно-технологическая ЭСИ предназначена для отображения особенностей технологии изготовления и (преимущественно) сборки изделия. Производственно-технологическая ЭСИ выполняется на стадиях технологической подготовки производства и в процессе производства изделия.

Физическая ЭСИ предназначена для отображения информации о конкретном экземпляре изделия. Физическая ЭСИ выполняется на стадии производства изделия и, как правило, корректируется в течение всего срока эксплуатации (например, отражая изменения в комплектации данного экземпляра изделия).

Эксплуатационная ЭСИ предназначена для отображения информации о тех СЧ изделия, которые подлежат обслуживанию и/или замене в ходе использования изделия по назначению. Эксплуатационная ЭСИ выполняется на стадиях разработки эскизного проекта, технического проекта и рабочей конструкторской документации.

Совмещенная ЭСИ предназначена для отображения комплексной информации об изделии и включает в себя отдельные разновидности ЭСИ (например, конструктивную ЭСИ и эксплуатационную ЭСИ).

6.3 Между перечисленными видами ЭСИ, как правило, существуют взаимосвязи. Например конструктивная ЭСИ может строиться на основе функциональной ЭСИ, а производственно-

технологическая, физическая и эксплуатационная ЭСИ строятся на основе конструктивной ЭСИ. Принадлежность ЭСИ одному и тому же изделию должна отражаться в ее наименовании и кодовом обозначении.

6.4 ЭСИ также применяют для определений вариантов структуры одного изделия. Различные варианты структуры соответствуют требованиям к составу информации в структуре изделия в зависимости от требований к конструкции изделия, технологии производства и условиям эксплуатации, предъявляемым на различных этапах ЖЦИ и стадиях разработки.

ЭСИ обозначают по правилам присвоения обозначения для основного конструкторского документа по ГОСТ 2.102 и ГОСТ 2.201. Разновидности ЭСИ отмечают символьным кодом в соответствующем реквизите согласно ГОСТ 2.104:

- Ф функциональная ЭСИ;
- К конструктивная ЭСИ;
- Т производственно-технологическая ЭСИ;
- С физическая ЭСИ;
- Э эксплуатационная ЭСИ;
- Б совмешенная ЭСИ.
- 6.5 При разработке совмещенной ЭСИ на различных стадиях (этапах) ЖЦИ ее выполняют с использованием контекстов. В этом случае каждый контекст обозначают соответственно составу информации. В реквизитной части ЭСИ указывают символьный код разновидности ЭСИ*.

Приложение А (справочное)

Комментарии к пунктам стандарта

3.1.1 Структура изделия обычно представляется в виде ориентированного ациклического графа, вершины которого соответствуют компонентам, а ребра, соединяющие вершины, — отношениям (связям) между компонентами. Вершина, соответствующая изделию в целом, называется начальной вершиной.

Примечания

- 1 Ациклический граф: граф, не имеющий циклов.
- 2 Цикл: путь, состоящий более чем из одной вершины, начинающийся и заканчивающийся в одной и той же вершине.
- 3 Путь в ориентированном графе: последовательность вершин и ребер, по которой можно из одной из вершин прийти к другой вершине.
- 3.1.2 Это понятие характеризует связи между компонентами (ребра графа), показывающие, что данная составная часть используется в конечном изделии или другой составной части.
- 3.1.3 Эта характеристика связи имеет набор атрибутов, показывающих, при каких условиях данная составная часть используется в конечном изделии или другой составной части.

Например, с указанной даты; в указанном диапазоне дат; в указанном изделии (заданным серийным номером и т. п.)

- 3.1.5 Как правило, в информационных объектах, используемых для представления электронной структуры изделий машиностроения и приборостроения в электронной среде, регламентируются и присутствуют только данные. Методы, определяющие способ обработки данных, не задаются и устанавливаются разработчиком применяемой автоматизированной системы.
- 4.1 ЭСИ не имеет бумажной формы выполнения. ЭСИ выполняют в виде набора данных, представляющих совокупность ИО, содержащих информацию об изделии; его составных частях и их входимости; документах, определяющих изделие и его СЧ, а также их свойствах (характеристиках).
- 4.2 Например, ЭСИ используют для организации информационного взаимодействия между САПР и системой управления данными об изделии, системой управления данными об изделии и системами управления производством, системой управления данными об изделии и системой управления эксплуатацией и т. д. Информационное взаимодействие между автоматизированными системами допускается осуществлять также на уровне вторичных документов, полученных из ЭСИ автоматически или автоматизированным способом.
 - 4.5 Сформированные как отчеты из данных ЭСИ вторичные документы (например,

спецификация, ведомость покупных изделий и т. п.) могут быть выполнены и в бумажной, и в электронной форме. Также могут быть получены другие вторичные документы («Прочие» — по ГОСТ 2.102)

4.6 Автоматически ЭСИ создается при проектировании изделия (сборочной единицы, комплекса, комплекта) в САПР, поддерживающих протоколы применения, например ИСО 10303-203 и, в частности, создание файла (файлов) по ИСО 10303-21. Такой файл (файлы), снабженный реквизитной частью по ГОСТ 2.104, может затем быть передан в системы управления данными об изделии, управления производством, управления эксплуатацией и т. д.

Полуавтоматически ЭСИ создается средствами системы управления данными об изделии, построенной на принципах серии стандартов ИСО 10303, поддерживающей протоколы применения и, в частности, создание файла (файлов) по ИСО 10303-21; аналогично предыдущему этот файл (файлы), снабженный реквизитной частью по ГОСТ 2.104, может затем быть экспортирован в САПР, системы управления производством, управления эксплуатацией и т. л.

- 4.7 В целях управления разработкой изделий, выпускаемых в нескольких разновидностях (модификациях, исполнениях) рекомендуется использовать построение ЭСИ, аналогичное по назначению групповым и базовым конструкторским документам по ГОСТ 2.113. Такая ЭСИ содержит ИО, относящиеся к неизменяемой части изделия и его СЧ, а также ИО, относящиеся к переменной части изделия и его СЧ. К ИО, отображающим связи СЧ переменной части с неизменяемой частью, присоединяются ИО, отображающие условия применения тех или иных СЧ в модификациях и исполнениях. Постоянная часть изделия может быть представлена в виде базовой ЭСИ. При формировании ЭСИ модификаций и исполнений создаются ЭСИ переменных частей и устанавливается ссылка на базовую ЭСИ.
- 5.2 Модели данных ИО, регламентирующих представление компонентов ЭСИ в компьютерной среде («родовые ресурсы» согласно ИСО 10303), приведены в ИСО 10303 [5] [7].
- 5.3 Язык описания моделей данных имеет две нотации: текстовую для автоматизированной обработки и графическую для использования человеком.
- 5.4 Содержательную часть ЭСИ выполняют, используя соответствующую виду и назначению ЭСИ модель (модели) данных. Допускается использовать одновременно несколько моделей данных, определяющих различные аспекты описания изделия.
- 6.2 В состав функциональной ЭСИ включают ИО, отображающие функциональные СЧ изделия и связи (отношения подчиненности (иерархии)) между ними, а также свойства (характеристики), отображающие назначение этих СЧ и предъявляемые к ним требования.
- В состав конструктивной (проектной) ЭСИ включают ИО, отображающие конкретные технические решения: сборочные единицы, комплексы, комплекты, детали.
- В состав производственно-технологической ЭСИ, кроме ИО конструктивной ЭСИ, включают ИО, отображающие особенности производства изделия. Производственно-технологическая ЭСИ является, как правило, расширением проектной ЭСИ и отличается от последней наличием ИО, отображающих появление в составе изделия технологических СЧ, обусловленное особенностями изготовления и (преимущественно) сборки изделия, применяемых материалов и т. д.
- В состав физической ЭСИ, кроме ИО конструктивной ЭСИ, включают экземпляры ИО, отображающие конкретные экземпляры СЧ изделия. Физическая ЭСИ является, как правило, расширением конструктивной ЭСИ и отличается от последней наличием у ИО, отображающих СЧ изделия, таких признаков как заводской номер (для СЧ собственного изготовления), серийный номер (для покупных изделий) и т. д.

В состав эксплуатационной ЭСИ включают ИО, отображающие те СЧ изделия, которые подлежат обслуживанию и/или замене в ходе использования изделия. Эксплуатационная ЭСИ является, как правило, частью (подмножеством) конструктивной ЭСИ. Эксплуатационная ЭСИ создается в процессе проектирования изделия и разработки рабочей конструкторской документации, уточняется в соответствии с физической ЭСИ и используется в процессе эксплуатации изделия.

- В состав совмещенной ЭСИ включают ИО, отображающие те СЧ изделия, которые пользователями ЭСИ рассматриваются в различных аспектах и требуют разного набора представляемой информации, например:
- при разработке конструктивной ЭСИ, охватывающей различные стадии разработки по ГОСТ 2.103;
- при поиске и устранении неисправностей ведут работу сначала с функциональными компонентами изделия (представленными в виде функциональной ЭСИ), затем с конкретными

техническими решениями (представленными в виде конструктивной ЭСИ), и наконец, с конкретными экземплярами СЧ изделия (представленными в виде физической ЭСИ).

6.5 Как правило, контекст указывается терминами «эскизный проект», «опытный образец», «для поставки за границу», «тепловой расчет» и т. п. Перечень таких допустимых терминов, задающих при визуализации определенное представление состава информации в ЭСИ, устанавливает разработчик, если это не определено в техническом задании.

На изделия, разрабатываемые по заказу Министерства обороны, этот перечень должен быть согласован с заказчиком (представительством заказчика).

Приложение Б (справочное)

Примеры способов визуализации

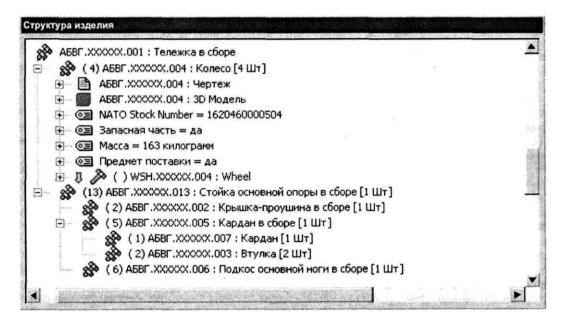


Рисунок Б.1 — Визуализация структуры изделия в виде многоуровневого списка

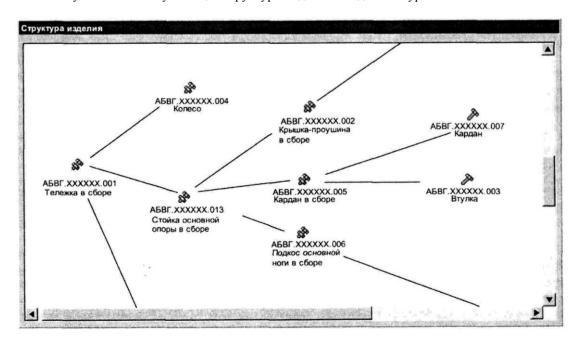


Рисунок Б.2 — Визуализация структуры изделия в виде графа

Примечания

- 1 На рисунках Б.1 и Б.2 приведены примеры представления электронной структуры изделия на экране дисплея.
- 2 Способы визуализации и использование условных графических обозначений для визуальной идентификации типа информации определяется возможностями конкретной САПР и может изменяться в зависимости от применяемой автоматизированной системы.

Библиография

[1] ИСО 10303-1—99	Системы автоматизации производства и их интеграция.
	Представление данных об изделии и обмен этими данными. Часть 1.
	Общие представления и основополагающие принципы.
[2] ИСО 10303-11—2004	Системы автоматизации производства и их интеграция.
	Представление данных об изделии и обмен этими данными. Часть 11.
	Методы описания. Справочное руководство по языку EXPRESS.
[3] ИСО 10303-21—2002	Системы автоматизации производства и их интеграция.
	Представление данных об изделии и обмен этими данными. Часть 21.
	Методы реализации. Кодирование открытым текстом структуры
	обмена
[4] ИСО 10303-22—1998	Системы автоматизации производства и их интеграция.
	Представление данных об изделии и обмен этими данными. Часть 22.
	Методы реализации. Стандартный интерфейс доступа к данным
[5] ИСО 10303-41—2000	Системы автоматизации производства и их интеграции.
	Представление данных об изделии и обмен этими данными. Часть 41.
	Интегрированные обобщенные ресурсы. Основы описания и
	поддержки изделий
[6] ИСО 10303-43—2000	Системы автоматизации производства и их интеграция.
	Представление данных об изделии и обмен этими данными. Часть 43.
	Интегрированные обобщенные ресурсы. Представление структур
[7] ИСО 10303-44—2000	Системы автоматизации производства и их интеграция.
	Представление данных об изделии и обмен этими данными. Часть 44.
	Интегрированные обобщенные ресурсы. Конфигурация структуры
	изделия
[8] ИСО 10303-203—1994	Системы автоматизации производства и их интеграция.
	Представление данных об изделии и обмен этими данными. Часть
	203. Протокол применения. Проект изделия с управляемой
	конфигурацией

Ключевые слова: конструкторская документация, электронная структура изделия, информационный объект