"Установки пожаротушения и сигнализации. Нормы и правила проектирования"

НПБ 88-03.

Дата введения в действие 31 декабря 2002 г.

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Настоящие нормы распространяются на проектирование автома-тических установок пожаротушения и пожарной сигнализации для зданий и сооружений различного назначения, в том числе возводимых в районах с особыми климатическими и природными условиями.

Необходимость при-менения установок пожаротушения и пожарной сигнализации определяет-ся по НПБ 110-99, соответствующим СНиП и другим документам, утвержденным в установленном порядке.

- 1.2. Настоящие нормы не распространяются на проектирование ав-томатических установок пожаротушения и пожарной сигнализации: зданий и сооружений, проектируемых по специальным нормам; технологических установок, расположенных вне зданий; зданий складов с передвижными стеллажами; зданий складов для хранения продукции в аэрозольной упаковке; зданий складов с высотой складирования грузов более 5,5 м.
- 1.3. Настоящие нормы не распространяются на проектирование уста-новок пожаротушения для тушения пожаров класса Д (по ГОСТ 27331), а также химически активных веществ и материалов, в том числе: реагирующих с огнетушащим веществом со взрывом (алюминийор-ганические соединения, щелочные металлы); разлагающихся при взаимодействии с огнетушащим веществом с выделением горючих газов (литийорганические соединения, азид свинца, гидриды алюминия, цинка, магния); взаимодействующих с огнетушащим веществом с сильным экзотер-мическим эффектом (серная кислота, хлорид титана, термит); самовозгорающихся веществ (гидросульфит натрия и др.).

2. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

2.1. В настоящих нормах применяют следующие термины с соответ-ствующими определениями.

Автоматический водопитатель - водопитатель, автоматически обеспечивающий давление в трубопроводах, необходимое для срабатывания узлов управления.

Автоматический пожарный извещатель - пожарный извещатель, реагирующий на факторы, сопутствующие пожару (по ГОСТ 12.2.047).

Автоматическая установка пожаротушения - установка пожаротушения, автоматически срабатывающая при превышении контролируемым фактором (факторами) пожара установленных пороговых значений в защищаемой зоне.

Автономный пожарный извещатель - пожарный извещатель, реагирующий на определенный уровень концентрации аэрозольных продуктов горения (пиролиза) веществ и материалов и, возможно, других факторов пожара, в корпусе которого конструктивно объединены автономный источник питания и все компоненты, необходимые для обнаружения пожара и непосредственного оповещения о нем (по НПБ 66-97).

Автономная установка пожаротушения - установка пожаротушения, автоматически осуществляющая функции обнаружения и тушения пожара независимо от внешних источников питания и систем управления.

Адресный пожарный извещатель - пожарный извещатель, который передает на адресный приемно-контрольный прибор код своего адреса вместе с извещением о пожаре (по <u>НПБ</u> 58-97).

Акселератор - устройство, обеспечивающее при срабатывании оросителя уменьшение времени срабатывания спринклерного воздушного сигнального клапана.

Батарея газового пожаротушения - группа модулей газового пожа-ротушения, объединенных общим коллектором и устройством ручного пуска.

Вспомогательный водопитатель - водопитатель, автоматически обеспечивающий давление в трубопроводах, необходимое для срабатыва-ния узлов управления, а также расчетные расход и напор воды и/или вод-ного раствора до выхода на рабочий режим основного водопитателя.

Газовый пожарный извещатель - пожарный извещатель, реагирующий на газы, выделяющиеся при тлении или горении материалов (по НПБ 71-98).

Генератор огнетушащего аэрозоля - устройство для получения огнетушащего аэрозоля с заданными параметрами и подачи его в защищаемое помещение.

Дистанционное включение [пуск] установки - включение [пуск] от пусковых элементов, устанавливаемых в защищаемом помещении или рядом с ним, в диспетчерской или на пожарном посту, у защищаемого сооружения или оборудования.

Дифференциальный тепловой пожарный извещатель - пожарный извещатель, формирующий извещение о пожаре при превышении скорости нарастания температуры окружающей среды выше установленного порогового значения (по <u>НПБ 85-00</u>).

Дозатор - устройство, предназначенное для дозирования пенообразователя (добавок к воде) в установках пожаротушения.

Дренчерный ороситель - ороситель с открытым выходным отверстием (по ГОСТ Р 51043).

Дренчерная установка пожаротушения - установка пожаротушения, оборудованная дренчерными оросителями.

Дымовой ионизационный [радиоизотопный] пожарный извещатель - пожарный извещатель, принцип действия которого основан на реги-страции изменений ионизационного тока, возникающих в результате воздействия на него продуктов горения.

Дымовой оптический пожарный извещатель - пожарный извещатель, реагирующий на продукты горения, способные воздействовать на поглощающую или рассеивающую способность излучения в инфракрасном, ультрафиолетовом или видимом диапазонах спектра (по НПБ 65-97).

Дымовой пожарный извещатель - пожарный извещатель, реаги-рующий на частицы твердых или жидких продуктов горения и (или) пиро-лиза в атмосфере (по <u>НПБ 65-97</u>).

Запас огнетушащего вещества - требуемое количество огнетушащего вещества, хранящееся на объекте в целях оперативного вос-становления расчетного количества и резерва огнетушащего вещества (по ГОСТ 12.3.046).

Запорно-пусковое устройство - запорное устройство, устанавливаемое на сосуде (баллоне) и обеспечивающее выпуск из него огнетушащего вещества.

Зона контроля пожарной сигнализации (пожарных извещателей) - совокупность площадей, объемов помещений объекта, появление в которых факторов пожара будет обнаружено пожарными извещателями.

Инерционность установки - время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента до начала подачи огнетушащего вещества (состава) в защищаемую зону.

Примечание. В установках пожаротушения, в которых предусмотрена задержка выпуска огнетушащего вещества для эвакуации людей из защищаемого помещения и остановку технологического оборудования, это время не входит в их инерционность.

Интенсивность подачи огнетушащего вещества - количество огнетушащего вещества, подаваемое на единицу площади (объема) в единицу времени.

Камера задержки - устройство, установленное на линии сигнализатора давления и предназначенное для сведения к минимуму вероятности подачи ложных сигналов тревоги, вызываемых приоткрыванием сигналь-ного клапана вследствии резких колебаний давления источника водоснабжения.

Комбинированный пожарный извещатель - пожарный извещатель, реагирующий на два или более фактора пожара.

Линейный пожарный извещатель (дымовой, тепловой) - пожарный извещатель, реагирующий на факторы пожара в протяженной, линей-ной зоне.

Магистральный трубопровод - трубопровод, соединяющий рас-пределительные устройства установок гозового пожаротушения с распре-делительными трубопроводами.

Максимально-дифференциальный тепловой пожарный извещатель - пожарный извещатель, совмещающий функции максимального и дифференциального тепловых пожарных извещателей (по <u>НПБ 85-00</u>).

Максимальный тепловой пожарный извещатель - пожарный извещатель, формирующий извещение о пожаре при превышении температуры окружающей среды установленного порогового значения - температуры срабатывания извещателя (по НПБ 85-00).

Местное включение [пуск] установки - включение (пуск) от пусковых элементов, устанавливаемых в помещении насосной станции или станции пожаротушения, а также от пусковых элементов, устанавливаемых на модулях пожаротушения.

Модульная установка пожаротушения - установка пожаротушения, состоящая из одного или нескольких модулей, способных самостоятельно выполнять функцию пожаротушения, размещенных в защищаемом помещении или рядом с ним.

Модуль пожаротушения - устройство, в корпусе которого совме-щены функции хранения и подачи огнетушащего вещества при воздейст-вии пускового импульса на привод модуля.

Модуль пожаротушения импульсный - модуль пожаротушения с продолжительностью подачи огнетушащего вещества до 1 с. Насадок - устройство для выпуска и распределения огнетушащего вещества.

Нормативная интенсивность подачи огнетушащего вещества - интенсивность подачи огнетушащего вещества, установленная в нормативной документации.

Нормативная огнетушащая концентрация - огнетушащая концентрация установленная в действующих нормативных документах.

Огнетушащий аэрозоль - продукты горения аэрозолеобразующего состава, оказывающие огнетушащее действие на очаг пожара.

Огнетушащее вещество - вещество, обладающее физико-химическими свойствами, позволяющими создать условия для прекраще-ния горения (по ГОСТ 12.1.033).

Огнетушащая концентрация - концентрация огнетушащего веще-ства в объеме, создающая среду, не поддерживающую горение.

Ороситель - устройство для разбрызгивания или распыливания воды и/или водных растворов (по ГОСТ Р 51043).

Основной водопитатель - водопитатель, обеспечивающий работу установки пожаротушения с расчетным расходом и давлением воды и/или водного раствора в течение нормируемого времени.

Параметр негерметичности помещения - величина, численно ха-рактеризующая негерметичность защищаемого помещения и определяемая как отношение суммарной площади постоянно открытых проемов к объе-му защищаемого помещения.

Питающий трубопровод - трубопровод, соединяющий узел управ-ления с распределительными трубопроводами.

Побудительная система - трубопровод, заполненный водой, водным раствором, сжатым воздухом, или трос с тепловыми замками, предназна-ченные для автоматического и дистанционного включения дренчерных ус-тановок пожаротушения, а также установок газового или порошкового по-жаротушения.

Подводящий трубопровод - трубопровод, соединяющий источник огнетушащего вещества с узлами управления.

Пожарный извещатель - устройство для формирования сигнала о пожаре (по ГОСТ 12.2.047).

Пожарный извещатель пламени - прибор, реагирующий на элек-тромагнитное излучение пламени или тлеющего очага (по НПБ 72-98).

Пожарный пост - специальное помещение объекта с круглосуточ-ным пребыванием дежурного персонала, оборудованное приборами кон-троля состояния средств пожарной автоматики.

Пожарный сигнализатор - устройство для формирования сигнала о срабатывании установок пожаротушения и/или запорных устройств.

Прибор пожарный управления - устройство, предназначенное для формирования сигналов управления автоматическими средствами пожаро-тушения, контроля их состояния, управления световыми и звуковыми опо-вещателями, а также различными информационными табло и мнемосхемами (по НПБ 75-98).

Прибор приемно-контрольный пожарный - устройство, предназначенное для приема сигналов от пожарных извещателей, обеспечения электропитанием активных (токопотребляющих) пожарных извещателей, выдачи информации на световые, звуковые оповещатели и пульты централизованного наблюдения, а также формирования стартового импульса запуска прибора пожарного управления (по НПБ 75-98).

Прибор приемно-контрольный пожарный и управления - устройство, совмещающее в себе функции прибора приемно-контрольного пожарного и прибора пожарного управления (по НПБ 75-98). Распределительный трубопровод - трубопровод с установленными на нем оросителями (насадками) для распределения огнетушащего вещества в защищаемой зоне.

Распределительное устройство - запорное устройство, устанавли-ваемое на трубопроводе и обеспечивающее пропуск газового огнетушащего вещества в определенный магистральный трубопровод.

Расчетное количество огнетушащего вещества - количество огнетушащего вещества, определенное в соответствии с требованиями нормативных документов и хранящееся в установке пожаротушения, готовое к немедленному применению в случае возникновения пожара.

Резерв огнетушащего вещества - требуемое количество огнетуша-щего вещества, готовое к немедленному применению в случаях повторно-го воспламенения или невыполнения установкой пожаротушения своей задачи (по ГОСТ 12.3.046).

Ручной пожарный извещатель - устройство, предназначенное для ручного включения сигнала пожарной тревоги в системах пожарной сигнализации и пожаротушения (по <u>HПБ</u> 70-98).

Система пожарной сигнализации - совокупность установок пожарной сигнализации, смонтированных на одном объекте и контролируемых с общего пожарного поста.

Соединительные линии - провода и кабели, обеспечивающие соединение между компонентами системы пожарной сигнализации. Спринклерный ороситель - ороситель с запорным устройством выходного отверстия, вскрывающимся при срабатывании теплового замка (по ГОСТ Р 51043).

Спринклерная водозаполненная установка пожаротушения - спринклерная установка пожаротушения, все трубопроводы которой за-полнены водой (водным раствором).

Спринклерная воздушная установка пожаротушения - спринк-лерная установка пожаротушения, подводящий трубопровод которой заполнен водой (водным раствором), остальные - воздухом под давлением.

Спринклерная установка пожаротушения - автоматическая установка пожаротушения, оборудованная спринклерными оросителями.

Станция пожаротушения - сосуды и оборудование установок по-жаротушения, размещенные в специальном помещении.

Степень негерметичности помещения - выраженное в процентах отношение суммарной площади постоянно открытых проемов к общей площади поверхности помещения.

Тепловой замок - запорный термочувствительный элемент, вскры-вающийся при определенном значении температуры.

Тепловой пожарный извещатель - пожарный извещатель, реаги-рующий на определенное значение температуры и (или) скорости ее нарас-тания (по НПБ 85-00).

Тонкораспыленная струя (факел) воды - вода, получаемая в ре-зультате дробления водяной струи на капли, среднеарифметический диа-метр которых 150 мкм и менее.

Точечный пожарный извещатель (дымовой, тепловой) - пожар-ный извещатель, реагирующий на факторы пожара в компактной зоне. Узел управления - совокупность запорных и сигнальных устройств с ускорителями (замедлителями) их срабатывания, трубопроводной арма-туры и измерительных приборов, расположенных между подводящим и питающим трубопроводами установок водяного и пенного пожаротушения и предназначенных для их пуска и контроля за работоспособностью.

Установка локального пожаротушения по объему - установка объемного пожаротушения, воздействующая на часть объема помещения и/или на отдельную технологическую единицу.

Установка локального пожаротушения по поверхности - уста-новка поверхностного пожаротушения, воздействующая на часть площади помещения и/или на отдельную технологическую единицу.

Установка объемного пожаротушения - установка пожаротушения для создания среды, не поддерживающей горение в объеме защищаемого помещения (сооружения).

Установка поверхностного пожаротушения - установка пожаро-тушения, воздействующая на горящую поверхность.

Установка пожарной сигнализации - совокупность технических средств для обнаружения пожара, обработки, представления в заданном виде извещения о пожаре, специальной информации и/или выдачи команд на включение автоматических установок пожаротушения и технические устройства.

Установка пожаротушения - совокупность стационарных техниче-ских средств для тушения пожара за счет выпуска огнетушащего вещества.

Централизованная установка газового пожаротушения - установка газового пожаротушения, в которой баллоны с газом размещены в помещении станции пожаротушения.

Шлейф пожарной сигнализации - соединительные линии, прокладываемые от пожарных извещателей до распределительной коробки или приемно-контрольного прибора.

3. ОБЩИЕ ПОЛОЖЕНИЯ

- 3.1. Автоматические установки пожаротушения следует проектиро-вать с учетом нормативных документов, действующих в этой области, а также строительных особенностей защищаемых зданий, помещений и со-оружений, возможности и условий применения огнетушащих веществ ис-ходя из характера технологического процесса производства.
- 3.2. Автоматические установки пожаротушения должны выполнять одновременно и функции автоматической пожарной сигнализации. Тушение пожаров класса С возможно, если при этом не образуется взрывоопасной атмосферы.
- 3.3. Тип установки пожаротушения, способ тушения, огнетушащее вещество определяются организацией-проектировщиком с учетом пожарной опасности и физико-химических свойств производимых, хранимых и применяемых веществ и материалов, а также особенностей защищаемого оборудования.
- 3.4. При устройстве установок пожаротушения в зданиях и сооруже-ниях с наличием в них отдельных помещений, где по нормам требуется только пожарная сигнализация, вместо нее, с учетом технико-экономического обоснования, допускается предусматривать защиту этих помещений установками пожаротушения. В этом случае интенсивность подачи огнетушащего вещества следует принимать нормативной, а расход не должен быть диктующим, принимая во внимание требования п. 1.6 НПБ 110-99*.
- 3.5. При срабатывании установки пожаротушения должна быть предусмотрена подача сигнала на отключение технологического оборудования в защищаемом помещении в соответствии с технологическим регламентом или требованиями настоящих норм.

4. УСТАНОВКИ ПОЖАРОТУШЕНИЯ ВОДОЙ, ПЕНОЙ НИЗ-КОЙ И СРЕДНЕЙ КРАТНОСТИ

- 4.1. Исполнение установок водяного пожаротушения должно соответствовать требованиям ГОСТ Р 50680, пенного ГОСТ Р 50800.
- 4.2. Параметры установок пожаротушения следует определять в соответствии с обязательным приложением 1 и таблицами 1-3.
- 4.3. Установки водяного, пенного низкой кратности, а также водяного пожаротушения со смачивателем подразделяются на спринклерные и дренчерные.
- 4.4. Площадь для расчета расхода и время работы установок, в которых в качестве огнетушащего вещества используется вода с добавкой, определяются аналогично установкам водяного пожаротушения по таблице 1.

Таблица 1.

Группа поме- щений	Интен- сивность оро- шения,	л/с м2, не менее	Макси- мальная площадь, контро- лируемая одним сприн- клерным ороси- телем или тепловым замком побуди- тельной системы, м2	Площадь для расчета расхода -воды, рас- твора пенообра-	Продолжи- тельность работы уста- новок водяного пожаро- тушения, мин	Макси- мальное расстоя- ние между сприн- клерными ороси- телями или легко- плавкими замками, м
	водой	раствором пенообра- зователя				
1	0,08	-	12	120	30	4
2	0,12	0,08	12	240	60	4
3	0,24	0,12	12	240	60	4
4.1	0,3	0,15	12	360	60	4
4.2	-	0,17	9	360	60	3
5	По таблице 2	По 2 таблице 2	9	180	60	3
6	"	"	9	180	60	3
7	"	"	9	180	-	3

Примечания:

- 1. Группы помещений приведены в приложении 1.
- 2. При оборудовании помещений дренчерными установками площадь для расче-та расхода воды, раствора пенообразователя и количества одновременно работающих секций следует определять в зависимости от технологических требований.
- 3. Продолжительность работы установок пенного пожаротушения с пеной низ-кой и средней кратности следует принимать:
- 15 мин для помещений категорий А, Б, В1 по взрывопожарной опасности;
- 10 мин для помещений категорий В2, В3 по пожарной опасности.
- 4. Для установок пожаротушения, в которых в качестве средства тушения ис-пользуется вода с добавкой смачивателя на основе пенообразователя общего назначе-ния, интенсивность орошения принимается в 1,5 раза меньше, чем для водяных.

- 5. Для спринклерных установок значения интенсивности орошения и площади для расчета расхода воды и раствора пенообразователя приведены для помещений вы-сотой до 10 м, а также для фонарных помещений при суммарной площади фонарей не более 10 % площади. Высоту фонарного помещения при площади фонарей более 10 % следует принимать до покрытия фонаря. Указанные параметры установок для помещений высотой от 10 до 20 м следует принимать по таблице 3.
- 6. В таблице указаны интенсивности орошения раствором пенообразователя об-щего назначения.
- 7. В случае если площадь, защищаемая установками водяного и пенного пожа-ротушения меньше площади для расчета расхода воды, указанной в таблице 1, то рас-ход воды или раствора пенообразователя для установки пожаротушения определяется исходя из фактической площади
- 4.5. Для помещений, в которых имеются установки с открытыми не-изолированными токоведущими частями, находящимися под напряжением, при водяном и пенном пожаротушении следует предусматривать автоматическое отключение электроэнергии до момента подачи огнетушащего вещества на очаг пожара.
- 4.6. При устройстве установок пожаротушения в помещениях, имеющих технологическое оборудование и площадки, горизонтально или наклонно установленные вентиляционные короба с шириной или диаметром сечения свыше 0,75 м, расположенные на высоте не менее 0,7 м от плоскости пола, если они препятствуют орошению защищаемой поверхности, следует дополнительно устанавливать спринклерные или дренчерные оросители с побудительной системой под площадки, оборудование и короба.
- 4.7. Оросители следует устанавливать в соответствии с требованиями таблицы 1 и с учетом их технических характеристик и карт орошения.
- 4.8. Тип запорной арматуры (задвижки), применяемой в установках пожаротушения, должен обеспечивать визуальный контроль ее состояния ("закрыто", "открыто"). Допускается использование датчиков контроля положения запорной арматуры.

Таблица 2.

		Группа	помещений	Í		
Высота		5		6		7
складиро-		Интенсивность орошения	л/ с м2	не менее		
вания, м	водой	раствором пенообра- зователя	водой	раствором пенообра- зователя	водой	раствором іпенообра- зователя
До 1	0,08	0,04	0,16	0,08	-	0,1
Св. 1 до 2	0,16	0,08	0,32	0,2	-	0,2
Св. 2 до 3	0,24	0,12	0,4	0,24	-	0,3
Св. 3 до 4	0,32	0,16	0,4	0,32	-	0,4
Св. 4 до 5,5	0,4	0,32	0,5	0,4	-	0,4

Примечания:

- 1. Группы помещений приведены в приложении 1.
- 2. В группе 6 тушение резины, РТИ, каучука, смол рекомендуется осуществлять водой со

смачивателем или низкократной пеной.

- 3. Для складов с высотой складирования до 5,5 м и высотой помещения более 10 м значения интенсивности и площади для расчета расхода воды и раствора пенообразователя по группам 5-7 должны быть увеличены из расчета 10 % на каждые 2 м высоты помещения.
- 4. В таблице указаны интенсивности орошения раствором пенообразователя общего назначения.

См. Таблица 3.

Спринклерные установки

- 4.9. Спринклерные установки водяного и пенного пожаротушения в зависимости от температуры воздуха в помещениях следует проектиро-вать: водозаполненными для помещений с минимальной температурой воздуха 5 оС и выше; воздушными для неотапливаемых помещений зданий с минимальной температурой ниже 5 оС.
- 4.10. Спринклерные установки следует проектировать для помеще-ний высотой не более 20 м, за исключением установок, предназначенных для защиты конструктивных элементов покрытий зданий и сооружений. В последнем случае параметры установок для помещений высотой более 20 м следует принимать по 1-й группе помещений (см. таблицу 1).
- 4.11. Для одной секции спринклерной установки следует принимать не более 800 спринклерных оросителей всех типов. При этом общая ем-кость трубопроводов каждой секции воздушных установок должна состав-лять не более 3,0 м3.

Каждая секция спринклерной установки должна иметь самостоя-тельный узел управления.

При использовании узла управления с акселератором емкость трубо-проводов воздушных установок может быть увеличена до 4,0 м3.

При защите нескольких помещений, этажей здания одной спринк-лерной секцией для выдачи сигнала, уточняющего адрес загорания, а так-же включения систем оповещения и противодымной защиты допускается устанавливать на питающих трубопроводах, исключая кольцевые, сигна-лизаторы потока жидкости.

Перед сигнализатором потока жидкости допускается устанавливать запорную арматуру, удовлетворяющую требованиям п.4.8

- 4.12. В зданиях с балочными перекрытиями (покрытиями) класса пожарной опасности К0 и К1 с выступающими частями высотой более 0,32 м, а в остальных случаях более 0,2 м, спринклерные оросители следует устанавливать между балками, ребрами плит и другими выступающими элементами перекрытия (покрытия) с учетом обеспечения равномерности орошения пола.
- 4.13. Расстояние от розетки спринклерного оросителя до плоскости перекрытия (покрытия) должно быть от 0,08 до 0,4 м. Расстояние от отражателя спринклерного оросителя, устанавливае-мого горизонтально относительно своей оси, до плоскости

перекрытия (покрытия) должно быть от 0,07 до 0,15 м. Допускается скрытая установка оросителей или в углублении под-весных потолков.

- 4.14. В зданиях с односкатными и двухскатными покрытиями, имеющими уклон более 1/3, расстояние по горизонтали от спринклерных оросителей до стен и от спринклерных оросителей до конька покрытия должно быть не более 1,5 м при покрытиях с классом пожарной опасно-сти К0 и не более 0,8 м в остальных случаях.
- 4.15. В местах, где имеется опасность механического повреждения, спринклерные оросители должны быть защищены специальными защит-ными решетками.
- 4.16. Спринклерные оросители водозаполненных установок необхо-димо устанавливать вертикально розетками вверх, вниз или горизонтально, в воздушных установках вертикально розетками вверх или горизонтально.
- 4.17. Спринклерные оросители установок следует устанавливать в помещениях или в оборудовании с учетом температуры окружающей среды и их температуры срабатывания.

Температура окружающей среды, С	Температура срабатывания, С			
до 38 вкл.	57			
от 39 до 50 вкл.	68-79			
от 51 до 70 вкл.	93			
от 71 до 100 вкл.	141			
от 101 до 140 вкл.	182			
от 141 до 200 вкл.	240			
от 201 до 220 вкл.	260			
от 221 до 300 вкл.	343			

- 4.18. В пределах одного защищаемого помещения следует устанав-ливать спринклерные оросители с выпускным отверстием одного диаметра.
- 4.19. Расстояние между спринклерными оросителями и стенами (пе-регородками) с классом пожарной опасности К1 не должно превышать по-ловины расстояния между спринклерными оросителями, указанными в таблице 1.

Расстояние между спринклерными оросителями и стенами (перего-родками) с ненормируемым классом пожарной опасности не должно пре-вышать 1,2 м. Расстояние между спринклерными оросителями установок водяного пожаротушения, устанавливаемыми под гладкими перекрытиями (покры-тиями), должно быть не менее 1,5 м.

Дренчерные установки

- 4.20. Автоматическое включение дренчерных установок следует осуществлять по сигналам от одного из видов технических средств: побудительных систем; установок пожарной сигнализации; датчиков технологического оборудования.
- 4.21. Побудительный трубопровод дренчерных установок, заполнен-ных водой или раствором пенообразователя, следует устанавливать на вы-соте относительно клапана не более? постоянного напора (в метрах) в подводящем трубопроводе или в соответствии с технической документа-цией на клапан, используемый в узле управления.

- 4.22. Для нескольких функционально связанных дренчерных завес допускается предусматривать один узел управления.
- 4.23. Включение дренчерных завес следует осуществлять автомати-чески или вручную (дистанционно или по месту).
- 4.24. Расстояние между оросителями дренчерных завес следует определять из расчета расхода воды или раствора пенообразователя 1,0 л/с на 1 м ширины проема.
- 4.25. Расстояние от теплового замка побудительной системы до плоскости перекрытия (покрытия) должно быть от 0,08 до 0,4 м.
- 4.26. Заполнение помещения пеной при объемном пенном пожаро-тушении следует предусматривать до высоты, превышающей самую высо-кую точку защищаемого оборудования не менее чем на 1 м.

При определении общего объема защищаемого помещения объем оборудования, находящегося в помещении, не следует вычитать из защи-щаемого объема помещения. Трубопроводы установок

4.27. Трубопроводы следует проектировать из стальных труб по ГОСТ 10704 - со сварными и фланцевыми соединениями, по ГОСТ 3262 - со сварными, фланцевыми, резьбовыми соединениями, а также разъемны-ми трубопроводными муфтами по ГОСТ Р 51737-2001.

Муфты трубопро-водные разъемные могут применяться для труб диаметром не более 200 мм

При прокладке трубопроводов за несъемными подвесными потолка-ми, в закрытых штробах и в подобных случаях их монтаж следует произ-водить только на сварке. В водозаполненных спринклерных установках допускается примене-ние пластиковых труб, прошедших соответствующие испытания. При этом, проектирование таких установок должно осуществляться по техни-ческим условиям, разрабатываемыми для каждого конкретного объекта.

4.28. Подводящие трубопроводы (наружные и внутренние), как пра-вило, необходимо проектировать кольцевыми.

Подводящие трубопроводы допускается проектировать тупиковыми для трех и менее узлов управления, при этом длина наружного тупикового трубопровода не должна превышать 200 м.

- 4.29. Кольцевые подводящие трубопроводы (наружные и внутрен-ние) следует разделять на ремонтные участки задвижками; число узлов управления на одном участке должно быть не более трех. При гидравличе-ском расчете трубопроводов выключение ремонтных участков кольцевых сетей не учитывается, при этом диаметр кольцевого трубопровода должен быть не менее диаметра подводящего трубопровода к узлам управления.
- 4.30. Подводящие трубопроводы (наружные) установок водяного пожаротушения и трубопроводы противопожарного, производственного или хозяйственно-питьевого водопровода, как правило, могут быть общими.
- 4.31. Присоединение производственного, санитарно-технического оборудования к питающим трубопроводам установок пожаротушения не допускается.

- 4.32. В спринклерных водозаполненных установках на питающих трубопроводах диаметром 65 мм и более, допускается установка пожарных кранов по СНиП 2.04.01-85*.
- 4.33. Расстановку внутренних пожарных кранов, подсоединяемых к трубопроводам спринклерной установки, следует проектировать согласно СНиП 2.04.01-85*.
- 4.34. Секция спринклерной установки с 12 и более пожарными кра-нами должна иметь два ввода. Для спринклерных установок с двумя сек-циями и более второй ввод с задвижкой допускается осуществлять от смежной секции. При этом над узлами управления необходимо предусмат-ривать установку задвижки с ручным приводом, а подводящий трубопро-вод должен быть закольцован и между этими узлами управления установ-лена разделительная задвижка.
- 4.35. На одной ветви распределительного трубопровода установок, как правило, следует устанавливать не более шести оросителей с диамет-ром выходного отверстия до 12 мм и не более четырех оросителей с диа-метром выходного отверстия более 12 мм.
- 4.36. К питающим и распределительным трубопроводам спринклер-ных установок допускается присоединять дренчерные завесы для ороше-ния дверных и технологических проемов, а к питающим трубопроводам дренчеры с побудительной системой включения.
- 4.37. Диаметр побудительного трубопровода дренчерной установки должен быть не менее 15 мм.
- 4.38. Тупиковые и кольцевые питающие трубопроводы должны быть оборудованы промывочными кранами с диаметром условного прохода не менее 50 мм или заглушками. В тупиковых трубопроводах кран или заглушка устанавливаются в конце участка, в кольцевых в наиболее удаленном от узла управления месте.
- 4.39. Не допускается установка запорной арматуры на питающих и распределительных трубопроводах, за исключением случаев, предусмот-ренных п.п. 4.11, 4.32, 4.34, 4.36, 4.38. Допускается установка пробковых кранов в верхних точках сети трубопроводов спринклерных установок в качестве устройств для выпуска воздуха и установка крана под манометр для контроля давления перед са-мым удаленным и высокорасположенным оросителем.
- 4.40. Питающие и распределительные трубопроводы воздушных спринклерных установок следует прокладывать с уклоном в сторону узла управления или спускных устройств, равным:
- 0,01 для труб с наружным диаметром менее 57 мм; 0,005 для труб с наружными диаметром 57 мм и более.
- 4.41. При необходимости следует предусматривать мероприятия, предотвращающие повышение давления в питающих трубопроводах уста-новки выше 1,0 МПа.
- 4.42. Методика расчета установок пожаротушения водой, пеной низ-кой и средней кратности приведена в рекомендуемом приложении 2.

Крепление трубопроводов

4.43. Крепление трубопроводов и оборудования при их монтаже сле-дует осуществлять в соответствии с требованиями СНиП 3.05.05 и ВСН 25.09.66.

- 4.44. Трубопроводы должны крепиться держателями непосредствен-но к конструкциям здания, при этом не допускается их использование в качестве опор для других конструкций.
- 4.45. Трубопроводы допускается крепить к конструкциям технологи-ческих устройств в зданиях только в порядке исключения. При этом на-грузка на конструкции технологических устройств принимается не менее чем двойная расчетная для элементов крепления.
- 4.46. Узлы крепления труб должны устанавливаться с шагом не бо-лее 4 м. Для труб с условным проходом более 50 мм допускается увеличе-ние шага между узлами крепления до 6 м.
- 4.47. Стояки (отводы) на распределительных трубопроводах длиной более 1 м должны крепиться дополнительными держателями. Расстояние от держателя до оросителя на стояке (отводе) должно составлять не менее 0,15 м.
- 4.48. Расстояние от держателя до последнего оросителя на распреде-лительном трубопроводе для труб с диаметром условного прохода 25 мм и менее должно составлять не более 0,9 м, а с диаметром более 25 мм 1,2 м.
- 4.49. В случае прокладки трубопроводов через гильзы и пазы конст-рукции здания расстояние между опорными точками должно составлять не более 6 м без дополнительных креплений.

Узлы управления

- 4.50. Узлы управления должны обеспечивать: проверку сигнализации об их срабатывании; измерение давления до и после узла управления.
- 4.51. Узлы управления установок следует размещать в помещениях насосных станций, пожарных постов, защищаемых помещениях, имеющих температуру воздуха 5 оС и выше, и обеспечивающими свободный доступ обслуживающего персонала. Узлы управления, размещаемые в защищаемом помещении, следует отделять от этих помещений противопожарными перегородками и пере-крытиями с пределом огнестойкости не менее REI 45 и дверьми с преде-лом огнестойкости не ниже EI 30. Узлы управления, размещаемые вне защищаемых помещений, следу-ет выделять остекленными или сетчатыми перегородками.
- 4.52. В узлах управления водозаполненных спринклерных установок для исключения ложных сигналов о срабатывании допускается преду-сматривать перед сигнализатором давления камеры задержки.
- 4.53. В узлах управления пенных спринклерных установок допуска-ется установка задвижки выше узла управления. Водоснабжение установок
- 4.54. Водопроводы различного назначения следует использовать как источник водоснабжения установок водяного пожаротушения. В случае если гидравлические параметры водопровода (напор, расход) не обеспечи-вают расчетных параметров установки, должна быть предусмотрена на-сосная станция для повышения давления. Источником водоснабжения установок пенного пожаротушения должны служить

водопроводы непитьевого назначения, при этом качество воды должно удовлетворять требованиям технических документов на при-меняемые пенообразователи. Допускается использование питьевого трубо-провода при наличии устройства, обеспечивающего разрыв струи (потока) при отборе воды.

- 4.55. Расчетное количество воды для установок водяного пожароту-шения допускается хранить в резервуарах водопроводов, где следует пре-дусматривать устройства, не допускающие расхода указанного объема во-ды на другие нужды.
- 4.56. При определении объема резервуара для установок водяного пожаротушения следует учитывать возможность автоматического попол-нения резервуаров водой в течение всего времени пожаротушения.
- 4.57. При объеме воды 1000 м3 и менее допускается хранить его в одном резервуаре.
- 4.58. Для установок пенного пожаротушения необходимо преду-сматривать (кроме расчетного) 100 % резерв пенообразователя.
- 4.59. Условия хранения пенообразователя должны отвечать инст-рукции "Порядок применения пенообразователей для тушения пожаров". М.: <u>ВНИИПО</u>, 1996. 28 с.
- 4.60. При хранении готового раствора пенообразователя в резервуаре для его перемешивания следует предусматривать перфорированный трубопровод, проложенный по периметру резервуара на 0,1 м ниже расчетного уровня воды в нем.
- 4.61. При определении количества раствора пенообразователя для установок пенного пожаротушения следует дополнительно учитывать емкость трубопроводов установки пожаротушения.
- 4.62. Максимальный срок восстановления расчетного количества огнетушащего вещества для установок водяного и пенного пожаротушения следует принимать согласно СНиП 2.04.02-84.
- 4.63. В спринклерных и дренчерных установках следует предусмат-ривать автоматический водопитатель, как правило, сосуд (сосуды) запол-ненный водой (не менее 0,5 м3) и сжатым воздухом.

В качестве автоматического водопитателя могут быть использованы подпитывающий насос (жокей-насос) с промежуточной мембранной емко-стью объемом не менее 40 л без резервирования или водопроводы различ-ного назначения с гарантированным давлением, обеспечивающим сраба-тывание узлов управления.

- 4.64. В установках пожаротушения с приводом резервного пожарно-го насоса от двигателя внутреннего сгорания включаемого вручную, долж-но предусматриваться устройство автоматического водопитателя, обеспе-чивающего работу установки с расчетным расходом огнетушащего веще-ства в течение 10 мин.
- 4.65. Автоматический водопитатель должен отключаться при вклю-чении основных насосов.
- 4.66. В зданиях высотой более 30 м вспомогательный водопитатель рекомендуется размещать в верхних технических этажах.

- 4.67. В подземных сооружениях, как правило, необходимо преду-сматривать устройства для отвода воды при пожаре.
- 4.68. В установках пенного пожаротушения, как правило, необходи-мо предусматривать сбор раствора пенообразователя при опробовании ус-тановки или из трубопроводов, в случае ремонта, в специальную емкость.

Насосные станции

- 4.69. Насосные станции автоматических установок пожаротуше-ния следует относить к 1-й категории надежности действия согласно СНиП 2.04.02-84.
- 4.70. Насосные станции следует размещать в отдельном помещении зданий в первых, цокольных и подвальных этажах, они должны иметь от-дельный выход наружу или на лестничную клетку, имеющую выход нару-жу.

Насосные станции допускается размещать в отдельно стоящих зда-ниях или пристройках.

4.71. Помещение насосной станции должно быть отделено от других помещений противопожарными перегородками и перекрытиями с преде-лом огнестойкости REI 45. Температура воздуха в помещении насосной станции должна быть от 5 до 35 оС, относительная влажность воздуха - не более 80 % при 25 оС.

Рабочее и аварийное освещение следует принимать согласно СНиП 23-05-95. Помещение станции должно быть оборудовано телефонной связью с помещением пожарного поста.

У входа в помещение станции должно быть световое табло "Насос-ная станция".

- 4.72. Размещение оборудования в помещениях насосных станций следует проектировать согласно СНиП 2.04.02-84.
- 4.73. В помещении насосной станции для подключения установки пожаротушения к передвижной пожарной технике следует предусматри-вать трубопроводы с выведенными наружу патрубками, оборудованными соединительными головками.

Трубопроводы должны обеспечивать наибольший расчетный расход диктующей секции установки пожаротушения.

Снаружи соединительные головки необходимо размещать с расчетом подключения одновременно не менее двух пожарных автомобилей.

- 4.74. Пожарных насосов, а также насосов-дозаторов в помещении насосной станции должно быть не менее двух (в том числе один резервный).
- 4.75. Задвижки, устанавливаемые на трубопроводах, наполняющих резервуар огнетушащим веществом, следует устанавливать в помещении насосной станции.
- 4.76. Контрольно-измерительное оборудование с мерной рейкой для визуального контроля уровня огнетушащего вещества в резервуарах (ем-костях) следует располагать в помещении насосной станции.

5. УСТАНОВКИ ПОЖАРОТУШЕНИЯ ВЫСОКОКРАТНОЙ ПЕНОЙ

Область применения

- 5.1. Установки пожаротушения высокократной пеной (далее по тексту раздела установки) применяются для объемного и локальнообъемного тушения пожаров классов A2, В по ГОСТ 27331.
- 5.2. Установки локальнообъемного пожаротушения высокократной пеной применяются для тушения пожаров отдельных агрегатов или оборудования в тех случаях, когда применение установок для защиты помещения в целом технически невозможно или экономически нецелесообразно.

Классификация установок

- 5.3. По воздействию на защищаемые объекты установки подразделяются на: установки объемного пожаротушения; установки локального пожаротушения по объему.
- 5.4. По конструкции пеногенераторов установки подразделяются на: установки с генераторами, работающими с принудительной подачей воздуха (как правило, вентиляторного типа); установки с генераторами эжекционного типа.

Проектирование

Общие требования

- 5.5. Установки должны соответствовать общим техническим требо-ваниям, установленным ГОСТ Р 50 800.
- 5.6. В установках следует использовать только специальные пенооб-разователи, предназначенные для получения пены высокой кратности.
- 5.7. Установки должны обеспечивать заполнение защищаемого объ-ема пеной до высоты, превышающей самую высокую точку оборудования, не менее чем на 1 м, в течение не более 10 мин.
- 5.8. Оборудование, длину и диаметр трубопроводов необходимо вы-бирать из условия, что инерционность установки не должна превышать 180 с.
- 5.9. Производительность установок и количество раствора пенообра-зователя определяются исходя из расчетного объема защищаемых поме-щений в соответствии с рекомендуемым приложением 3.

Если установка применяется в нескольких помещениях, в качестве расчетного принимается то помещение, для защиты которого требуется наибольшее количество раствора пенообразователя.

- 5.10. При применении установок для локального пожаротушения по объему защищаемые агрегаты или оборудование ограждаются металличе-ской сеткой с размером ячейки не более 5 мм. Высота ограждающей кон-струкции должна быть на 1 м больше высоты защищаемого агрегата или оборудования и находиться от него на расстоянии не менее 0,5 м.
- 5.11. Расчетный объем локального пожаротушения определяется произведением площади основания огораживающей конструкции агрегата или оборудования на ее высоту.

Время заполнения защищаемого объема при локальном тушении не должно превышать 180 с.

- 5.12. Установки должны быть снабжены фильтрующими элемента-ми, установленными на питающих трубопроводах перед распылителями, размер фильтрующей ячейки должен быть меньше минимального размера канала истечения распылителя.
- 5.13. В одном помещении должны применяться генераторы пены только одного типа и конструкции.

Количество пеногенераторов определяется расчётом, но принимается не менее двух.

- 5.14. При расположении генераторов пены в местах их возможного механического повреждения должна быть предусмотрена их защита.
- $5.15.\ \mathrm{B}$ установках кроме расчетного количества должен быть $100\ \%$ резерв пенообразователя.
- 5.16. При проектировании насосных станций, водоснабжения уста-новок, трубопроводов и их крепления необходимо руководствоваться тре-бованиями раздела 4 настоящих норм.

Трубопроводы следует проектировать из оцинкованных стальных труб по ГОСТ 3262.

Установки с генераторами, работающими с принудительной подачей воздуха

- 5.17. Генераторы пены должны размещаться в насосной станции или непосредственно в защищаемом помещении. В первом случае пена в за-щищаемое помещение подается либо непосредственно из выходного пат-рубка генератора, либо по специальным каналам, диаметр которых должен быть не менее диаметра выходного патрубка генератора, а длина не более 10 м. Во втором случае должен быть обеспечен забор свежего воздуха или применение пенообразователей, способных образовывать пену в среде продуктов горения.
- 5.18. Каналы для подачи пены должны соответствовать классу по-жарной опасности КО.
- 5.19. В верхней части защищаемых помещений должен быть преду-смотрен сброс воздуха при поступлении пены.
- 5.20. Если площадь защищаемого помещения превышает 400 м2, то ввод пены необходимо осуществлять не менее чем в двух местах, распо-ложенных в противоположных частях помещения.

Установки с генераторами эжекционного типа:

5.21. Установка может защищать как весь объем помещения (уста-новка объемного пожаротушения), так и часть помещения или отдельную технологическую единицу (установка локального пожаротушения по объ-ему). В первом случае генераторы размещаются под потолком и распреде-ляются равномерно по площади помещения, так, чтобы обеспечить запол-нение пеной всего объема помещения, включая выгороженные в нем уча-стки. Во втором случае генераторы размещаются непосредственно над защищаемым участком помещения или технологической единицей

6. УСТАНОВКИ ПОЖАРОТУШЕНИЯ ТОНКОРАСПЫЛЕННОЙ ВОДОЙ

- 6.1. Установки пожаротушения тонкораспыленной водой (далее по тексту раздела установки) применяются для поверхностного и локального по поверхности тушения очагов пожара классов A, B.
- 6.2. Исполнение установок должно соответствовать требованиям НПБ 80-99.
- 6.3. При использовании воды с добавками, выпадающими в осадок или образующими раздел фаз при длительном хранении, в установках должны быть предусмотрены устройства для их перемешивания.
- 6.4. Для модульных установок в качестве газа-вытеснителя приме-няются воздух, инертные газы, СО2, N2. Сжиженные газы, применяемые в качестве вытеснителей огнетушащего вещества, не должны ухудшать па-раметры работы установки. В установках для вытеснения огнетушащего вещества допускается применение газогенерирующих элементов, прошедших промышленные испытания и рекомендованных к применению в пожарной технике. Конст-рукция газогенерирующего элемента должна исключать возможность попадания в огнетушащее вещество каких-либо его фрагментов. Запрещается применение газогенерирующих элементов в качестве вытеснителей огнетушащего вещества при защите культурных ценностей.
- 6.5. Исключен.
- 6.6. Выходные отверстия оросителей должны быть защищены от за-грязняющих факторов внутренней и внешней среды. Защитные мероприятия, устройства, приспособления (обработка внутренних поверхностей, фильтры, сетки, декоративные корпуса, колпачки и т.д.) не должны ухудшать параметров работы установки.
- 6.7. Трубопроводы установок должны быть выполнены из оцинкованной или нержавеющей стали.
- 6.8. Исключен.
- 6.9. Расчет и проектирование установок производится на основе нормативнотехнической документации предприятия-изготовителя установок.

7. УСТАНОВКИ ГАЗОВОГО ПОЖАРОТУШЕНИЯ

Область применения

7.1. Установки газового пожаротушения (далее по тексту раздела - установки) применяются для ликвидации пожаров классов A, B, C по ГОСТ 27331 и электрооборудования (электроустановок с напряжением не выше указанного в ТД на используемые газовые огнетушащие вещества (ГОТВ)).

При этом установки не должны применяться для тушении пожаров:

волокнистых, сыпучих, пористых и других горючих материалов, склонных к самовозгоранию и тлению внутри объема вещества (древесные опилки, хлопок, травяная мука и др.);

химических веществ и их смесей, полимерных материалов, склонных к тлению и горению без доступа воздуха;

гидридов металлов и пирофорных веществ;

порошков металлов (натрий, калий, магний, титан и др.).

7.2. Установки объемного пожаротушения (кроме установок азотно-го и аргонного пожаротушения) применяются для защиты помещений (оборудования), имеющих стационарные ограждающие конструкции с па-раметром негерметичности не более значений, указанных в таблице 12 приложения 5.

Для установок азотного и аргонного пожаротушения параметр не-герметичности не должен превышать 0,001 м-1.

Примечания:

- 1. При разделении объема защищаемого помещения на смежные зоны (фальш-пол, фальшпотолок и т. п.) параметр негерметичности не должны превышать указанных значений для каждой зоны. Параметр негерметичности определяют без учета проемов в ограждающих поверхностях между смежными зонами, если в них предусмотрена одновременная подача газовых огнетушащих веществ.
- 2. Проектирование установок объемного пожаротушения для защиты помеще-ний с большими значениями параметра негерметичности производится по дополни-тельным нормам, разрабатываемым для конкретного объекта.

Классификация и состав установок

- 7.3. Установки подразделяются:
- по способу тушения: объемного тушения, локального по объему; по способу хранения газового огнетушащего вещества: централизо-ванные, модульные; по способу включения от пускового импульса: с электрическим, пневматическим, механическим пуском или их комбинацией.
- 7.4. Для автоматической установки газового пожаротушения (АУГП) могут быть предусмотрены следующие виды включения (пуска): автоматический (основной); дистанционный (ручной); местный (ручной).
- 7.5. Технологическая часть установок содержит сосуды с ГОТВ, тру-бопроводы и насадки. Кроме того, в состав технологической части устано-вок могут входить побудительные системы.

Проектирование

Огнетушащие вещества

7.6. В установках применяются ГОТВ, указанные в таблице 4.

Сжиженные газы
Двуокись углерода (CO2);

Хладон 23 (CF3H);

Хладон 125 (C2F5H);

Хладон 218 (C3F8);

Хладон 227ea (C3F7H);

Хладон 318Ц (C4F8Ц);

Шестифтористая сера (SF6).

Примечание. Применение других ГОТВ (в т. ч. сжиженных азота или аргона, а также не указанных в таблице 4) производится по дополнительным нормам, разрабаты-ваемым для конкретного объекта.

7.7. В качестве газа-вытеснителя следует применять воздух или азот, для которых точка росы должна быть не выше минус 40 оС.

Общие требования

- 7.8. Установки должны соответствовать требованиям ГОСТ Р 50969. Исполнение оборудования, входящего в состав установки, должно соот-ветствовать требованиям действующей нормативной документации.
- 7.9. При составлении проекта технологической части установки производят расчеты по определению:

массы ГОТВ в установке пожаротушения (приложение 6). При этом исходные данные для расчета массы приведены в приложении 5;

диаметра трубопроводов установки, типа и количества насадков, времени подачи ГОТВ (гидравлический расчет). Методика расчета для уг-лекислотной установки, содержащей изотермический резервуар, приведе-на в приложении 7. Для остальных установок расчет рекомендуется про-изводить по методикам, согласованным в установленном порядке; площади проема для сброса избыточного давления в защищаемом помещении при подаче газового огнетушащего вещества (приложение 8).

Установки объемного пожаротушения

7.10. Исходные данные для расчета и проектирования.

Исходными данными для расчета и проектирования установки являются:

перечень помещений и наличие пространств фальшполов и подвес-ных потолков, подлежащих защите установкой пожаротушения;

количество помещений (направлений), подлежащих одновременной защите установкой пожаротушения;

геометрические параметры помещения (конфигурация помещения, длина, ширина и высота ограждающих конструкций);

конструкция перекрытий и расположение инженерных коммуникаций;

площадь постоянно открытых проемов в ограждающих конструкци-ях и их расположение; предельно допустимое давление в защищаемом помещении;

диапазон температуры, давления и влажности в защищаемом по-мещении и в помещении, в котором размещаются составные части уста-новки;

предельно допустимое давление в защищаемом помещении, опреде-ляемое с учетом требований пункта 6 ГОСТ 12.3.047-98;

тип, величина и схема распределения пожарной нагрузки;

наличие и характеристика систем вентиляции, кондиционирования воздуха, воздушного отопления;

характеристика технологического оборудования;

категория помещений по НПБ 105-95 и классы зон по ПУЭ-98;

наличие людей и пути их эвакуации.

Исходные данные входят в состав задания на проектирование, которое согласовывают с организацией-разработчиком установки и включают в состав проектной документации.

7.11. Количество газового огнетушащего вещества.

- 7.11.1. Расчетное количество (масса) ГОТВ в установке должно быть достаточным для обеспечения его нормативной огнетушащей концентра-ции в любом защищаемом помещении или группе помещений, защищае-мых одновременно.
- 7.11.2. Централизованные установки, кроме расчетного количества ГОТВ, должны иметь его 100 %-ный резерв.

Допускается совместное хранение расчетного количества и резерва ГОТВ в изотермическом резервуаре при условии оборудования последнего запорно-пусковым устройством с реверсивным приводом и техническими средствами его управления.

7.11.3. Модульные установки, кроме расчетного количества ГОТВ, должны иметь его 100 %-ный запас.

При наличии на объекте нескольких модульных установок запас предусматривается в объеме, достаточном для восстановления работоспо-собности установки, сработавшей в любом из защищаемых помещений объекта.

Запас следует хранить в модулях, аналогичных модулям установок. Модули с запасом должны быть подготовлены к монтажу в установки.

Модули с запасом должны храниться на складе объекта или организации, осуществляющей сервисное обслуживание установок пожаротушения.

- 7.11.4. При необходимости испытаний установки запас ГОТВ на проведение указанных испытаний принимается из условия защиты помещения наименьшего объема, если нет других требований.
- 7.12. Временные характеристики.
- 7.12.1. Установка должна обеспечивать задержку выпуска газового огнетушащего вещества в защищаемое помещение при автоматическом и дистанционном пуске на время, необходимое для эвакуации из помещения людей, отключение вентиляции (кондиционирования и т. п.), закрытие за-слонок (противопожарных клапанов и т. д.), но не менее 10 с от момента включения в помещении устройств оповещения об эвакуации. Время полного закрытия заслонок (клапанов) в воздуховодах венти-ляционных систем в защищаемом помещении не должно превышать ука-занного времени задержки в это помещение.

Примечание. Допускается не отключать при пожаротушении вентиляционные установки, которые обеспечивают безопасность технологического процесса в защи-щаемом помещении. При этом расчет установки производится по специальной методи-ке с учетом индивидуальных особенностей защищаемого объекта.

- 7.12.2. Установка должна обеспечивать инерционность (время сраба-тывания без учета времени задержки выпуска ГОТВ) не более 15 с.
- 7.12.3. Установка должна обеспечивать подачу не менее 95 % массы газового огнетушащего вещества, требуемой для создания нормативной огнетушащей концентрации в защищаемом помещении, за временной ин-тервал, не превышающий: 10 с для модульных установок, в которых в качестве ГОТВ приме-няются сжиженные газы (кроме двуокиси углерода);
- 15 с для централизованных установок, в которых в качестве ГОТВ применяются сжиженные газы (кроме двуокиси углерода);
- 60 с для модульных и централизованных установок, в которых в ка-честве ГОТВ применяются двуокись углерода или сжатые газы.

Номинальное значение временного интервала определяется при хра-нении сосуда с ГОТВ при температуре 20 оС.

- 7.13. Сосуды для газового огнетушащего вещества.
- 7.13.1. В установках применяются:

модули газового пожаротушения;

батареи газового пожаротушения;

изотермические резервуары.

В централизованных установках сосуды следует размещать в стан-циях пожаротушения. В модульных установках модули могут располагать-ся как в самом защищаемом помещении, так и за его пределами, в непо-средственной близости от него. Расстояние от сосудов до источников теп-ла (приборов отопления и т. п.) должно составлять не менее 1

Распределительные устройства следует размещать в помещении станции пожаротушения.

- 7.13.2. Размещение технологического оборудования централизован-ных и модульных установок должно обеспечивать возможность их обслу-живания.
- 7.13.3. Сосуды следует размещать возможно ближе к защищаемым помещениям. При этом сосуды не следует располагать в местах, где они могут быть подвергнуты опасному воздействию факторов пожара (взрыва), механическому, химическому или иному повреждению, прямому воздей-ствию солнечных лучей.
- 7.13.4. Для модулей одного типоразмера в установке расчетные значения по наполнению ГОТВ и газом-вытеснителем должны быть одинаковыми.
- 7.13.5. При подключении двух и более модулей к коллектору следует применять модули одного типоразмера:
- с одинаковым наполнением ГОТВ и давлением газа-вытеснителя, ес-ли в качестве ГОТВ применяется сжиженный газ;
- с одинаковым давлением ГОТВ, если в качестве ГОТВ применяется сжатый газ. Подключение модулей к коллектору следует производить через об-ратный клапан. Примечание. Если алгоритм работы установки предусматривает одновремен-ную подачу из всех модулей, подключенных к общему коллектору, то допускается не устанавливать обратные клапаны для их подключения к коллектору. При этом для гер-метизации коллектора при отключении модулей следует предусмотреть заглушки.
- 7.13.6. Сосуды в составе установки должны быть надежно закрепле-ны в соответствии с эксплуатационными документами на сосуды.
- 7.13.7. Сосуды для хранения резерва должны быть подключены и на-ходиться в режиме местного пуска. Переключение таких сосудов в режим дистанционного или автоматического пуска предусматривается только по-сле подачи или отказа подачи расчетного количества ГОТВ.
- 7.13.8. В установках, где в качестве ГОТВ используются сжиженные газы, следует предусмотреть технические средства, обеспечивающие кон-троль массы ГОТВ в соответствии с ГОСТ Р 50969 и ТД на модули или изотермические резервуары. При этом модули, содержащие ГОТВ-сжиженные газы без газа-вытеснителя, должны быть оборудованы устройствами контроля его массы в соответствии с НПБ 54-96. При

использовании в качестве ГОТВ сжатого газа, а также газа-вытеснителя, сосуды обеспечиваются устройствами кон-троля давления.

- 7.14. Трубопроводы.
- 7.14.1. Трубопроводы установок следует выполнять из стальных труб по ГОСТ 8732 или ГОСТ 8734, а также труб из латуни или нержавеющей стали. Побудительные трубопроводы следует выполнять из стальных труб по ГОСТ 10704. Для резьбового соединения труб следует применять фи-тинги из аналогичного материала.
- 7.14.2. Соединения трубопроводов в установках пожаротушения должны быть сварными, резьбовыми, фланцевыми или паяными.
- 7.14.3. Конструкция трубопроводов должна обеспечивать возможность продувки для удаления воды после проведения гидравлических испытаний или слива накопившегося конденсата.
- 7.14.4. Исключен.
- 7.14.5. Трубопроводы должны быть надежно закреплены. Зазор меж-ду трубопроводом и стеной должен составлять не менее 2 см.
- 7.14.6. Трубопроводы и их соединения должны обеспечивать проч-ность при давлении, равном 1,25 Рраб, и герметичность в течение 5 мин при давлении, равном Рраб (где Рраб максимальное давление ГОТВ в сосуде в условиях эксплуатации).
- 7.14.7. Трубопроводы установок должны быть заземлены (занулены). Знак и место заземления по ГОСТ 21130.
- 7.14.8. Для соединения модулей с трубопроводом допускается при-менять гибкие соединители (например, рукава высокого давления) или медные трубопроводы, прочность которых должна обеспечиваться при давлении не менее 1,5 Рраб.
- 7.14.9. Система распределительных трубопроводов, как правило, должна быть симметричной.
- 7.14.10. Внутренний объем трубопроводов не должен превышать 80 % объема жидкой фазы расчетного количества ГОТВ при температуре 20 оС.
- 7.15. Побудительные системы.
- 7.15.1. Размещение термочувствительных элементов побудительных систем в защищаемых помещениях производится в соответствии с требо-ваниями, приведенными в разделе "Установки пожаротушения водой, пе-ной низкой и средней кратности".
- 7.15.2. Диаметр условного прохода побудительных трубопроводов следует принимать равным 15 мм.
- 7.15.3. Побудительные трубопроводы и их соединения в установках должны обеспечивать прочность при давлении 1,25 P и герметичность при давлении не менее P (P максимальное давление газа (воздуха) или жид-кости в побудительной системе).

7.15.4. Устройства дистанционного пуска установки должны распо-лагаться на высоте не более 1,7 м.

Остальные требования к устройствам дистанционного пуска должны соответствовать требованиям к аналогичным устройствам АУГП, изло-женным в разделах 11-14 и действующей нормативной документации.

- 7.16. Насадки.
- 7.16.1. Выбор типа насадков определяется их техническими характе-ристиками для конкретного ГОТВ.
- 7.16.2. Насадки должны размещаться в защищаемом помещении с учетом его геометрии и обеспечивать распределение ГОТВ по всему объему помещения с концентрацией не ниже нормативной.
- 7.16.3. Насадки, установленные на трубопроводной разводке для подачи ГОТВ, плотность которых при нормальных условиях больше плотности воздуха, должны быть расположены на расстоянии не более 0,5 м от перекрытия (потолка, подвесного потолка, фальшпотолка) защищаемого помещения.
- 7.16.4. Разница расходов ГОТВ между двумя крайними насадками на одном распределительном трубопроводе не должна превышать 20 %.
- 7.16.5. На входе в насадок, диаметр индивидуальных выпускных отверстий которого не превышает 3 мм, рекомендуется устанавливать фильтры.
- 7.16.6. В одном помещении (защищаемом объеме) должны приме-няться насадки только одного типоразмера.
- 7.16.7. Прочность насадков должна обеспечиваться при давлении 1,25 Рраб. Поверхность выпускных отверстий насадков должна быть вы-полнена из коррозионно-стойкого материала.
- 7.16.8. Выпускные отверстия насадков должны быть ориентированы таким образом, чтобы струи ГОТВ не были непосредственно направлены в постоянно открытые проемы защищаемого помещения.
- 7.16.9. При расположении насадков в местах их возможного механи-ческого повреждения или засорения они должны быть защищены.
- 7.17. Станция пожаротушения.
- 7.17.1. Помещения станций пожаротушения должны быть отделены от других помещений противопожарными перегородками 1-го типа и пе-рекрытиями 3-го типа. Помещения станции нельзя располагать под и над помещениями ка-тегорий А и Б. Помещения станций пожаротушения, как правило, необходимо рас-полагать в подвале, цокольном этаже или на первом этаже зданий.

Допус-кается размещение станции пожаротушения выше первого этажа, при этом подъемно-транспортные устройства зданий, сооружений должны обеспе-чивать возможность доставки оборудования к месту установки и проведе-ния эксплуатационных работ. Выход из станции следует предусматривать наружу, на лестничную клетку, имеющую выход наружу, в вестибюль или в коридор, при условии, что расстояние от

выхода из станции до лестнич-ной клетки не превышает 25 м и в этот коридор нет выходов из помещений категорий А и Б.

Примечание. Изотермические резервуары допускается устанавливать вне по-мещения станции с устройством навеса для защиты от осадков и солнечной радиации с ограждением по периметру площадки. При этом следует:

предусмотреть в месте установки резервуара аварийное освещение; выполнить мероприятия, исключающие несанкционированный доступ людей к резервуару, узлам его управления (пуска) и распределительным устройствам; предусмотреть подъездные пути к резервуару.

7.17.2. Высота помещения станции пожаротушения должна быть не менее 2,5 м для установок, в которых применяются модули или батареи. Минимальная высота помещения при использовании изотермического ре-зервуара определяется высотой резервуара с учетом обеспечения расстоя-ния от него до потолка не менее 1 м.

В помещениях станций пожаротушения должна быть температура от 5 до 35 оС, относительная влажность воздуха не более 80 % при 25 оС, ос-вещенность - не менее 100 лк при люминесцентных лампах или не менее 75 лк при лампах накаливания. Аварийное освещение должно соответствовать требованиям СНиП 23.05-95.

Помещения станций должны быть оборудованы приточно-вытяжной вентиляцией с не менее чем двукратным воздухообменом, а также теле-фонной связью с помещением

дежурного персонала, ведущим круглосу-точное дежурство. У входа в помещение станции должно быть установлено световое табло "Станция пожаротушения". Входная дверь должна иметь запорное устройство, исключающее

пожаротушения". Входная дверь должна иметь запорное устройство, исключающе несанкционированный доступ в помещение станции пожаротушения.

- 7.17.3. Размещение приборов и оборудования в станции пожароту-шения должно обеспечивать возможность их обслуживания.
- 7.18. Устройства местного пуска.
- 7.18.1. Централизованные установки должны быть оснащены уст-ройствами местного пуска.
- 7.18.2. Местный пуск модульных установок, модули которых разме-щены в защищаемом помещении, должен быть исключен. При наличии пусковых элементов на модулях они должны быть блокированы.
- 7.18.3. Местный пуск модульных установок, модули которых разме-щены вне защищаемого помещения, как правило, не предусматривается. В обоснованных случаях местный пуск может быть применен, при этом пус-ковые элементы должны: располагаться вне защищаемого помещения в зоне, безопасной от воздействия факторов пожара;

иметь ограждение с запорным устройством, исключающим несанк-ционированный доступ к ним;

обеспечивать одновременное приведение в действие всех пусковых элементов (т. е. модулей) установки.

- 7.18.4. Пусковые элементы устройств местного пуска должны распо-лагаться на высоте не более 1,7 м от пола.
- 7.18.5. При наличии нескольких направлений подачи ГОТВ пуско-вые элементы устройств местного пуска батарей (модулей) и распредели-тельных устройств должны

иметь таблички с указанием защищаемого помещения (направления). Требования к защищаемым помещениям

- 7.19. Параметр негерметичности защищаемых помещений не должен превышать значений, указанных в п. 7.2. Должны быть приняты меры по ликвидации технологически необоснованных проемов, установлены до-водчики дверей, уплотнены кабельные проходки.
- 7.20. В помещении предусматривается постоянно открытый проем (или устройство, проем которого открывается при подаче ГОТВ) для сброса давления, если его необходимость подтверждена расчетом по методике, приведенной в приложении 8.
- 7.21. В системах воздуховодов общеобменной вентиляции, воздуш-ного отопления и кондиционирования воздуха защищаемых помещений следует предусматривать автоматически закрывающиеся при обнаружении пожара воздушные затворы (заслонки или противопожарные клапаны).

Исключением являются вентиляционные установки, которые обес-печивают безопасность технологического процесса в защищаемом поме-щении, при этом расчет установки производится по дополнительным нор-мам, разрабатываемым для конкретного объекта. Допускается не устанавливать в воздуховодах автоматически закры-вающиеся затворы (заслонки), если вентиляционные проемы учтены при проектировании установки как постоянно открытые проемы и остановка вентиляционных потоков производится до подачи ГОТВ.

7.22. Для оперативного удаления ГОТВ после тушения пожара необ-ходимо использовать общеобменную вентиляцию зданий, сооружений и помещений. Допускается для этой цели предусматривать передвижные вентиляционные установки.

Установки локального пожаротушения по объему

- 7.23. Установки локального пожаротушения по объему применяются для тушения пожара отдельных агрегатов или оборудования в тех случаях, когда применение установок объемного пожаротушения технически не-возможно или экономически нецелесообразно.
- 7.24. Расчетный объем локального пожаротушения определяется произведением высоты защищаемого агрегата или оборудования на площадь проекции на поверхность пола. При этом все расчетные габариты (длина, ширина и высота) агрегата или оборудования должны быть увеличены на 1 м.
- 7.25. При локальном пожаротушении по объему следует использо-вать двуокись углерода.
- 7.26. Нормативная массовая огнетушащая концентрация при локаль-ном тушении по объему двуокисью углерода составляет 6 кг/м3.
- 7.27. Время подачи ГОТВ при локальном тушении не должно пре-вышать 30 с.

Требования безопасности

7.28. Проектирование установок следует производить с учетом обеспечения возможности выполнения требований безопасности при проведении работ по монтажу, наладке,

приемке и эксплуатации установки, которые изложены в действующей нормативнотехнической документации для данного вида установок.

- 7.29. Устройства ручного пуска установок должны быть защищены от случайного приведения их в действие или механического повреждения и опломбированы, за исключением устройств местного пуска, установлен-ных в помещениях станции пожаротушения или устройств дистанционного пуска пожарных постов.
- 7.30. Предохранительные устройства для сброса ГОТВ (газа) следует располагать таким образом, чтобы исключить травмирование персонала при их срабатывании. К выпускным узлам предохранительных устройств изотермического резервуара следует подключить дренажные трубопроводы для отвода газа в безопасную зону.
- 7.31. В установках на участках трубопроводов, где между клапанами возможно образование замкнутых полостей для сжиженных ГОТВ (напри-мер, между обратным клапаном батареи и распределительным устройст-вом при отказе последнего), рекомендуется предусматривать предохрани-тельные устройства для безопасного сброса ГОТВ.
- 7.32. Сосуды, применяемые в установках пожаротушения, должны соответствовать требованиям ПБ 10-115-96.
- 7.33. Заземление и зануление приборов и оборудования установок должно выполняться согласно ПУЭ и соответствовать требованиям технической документации на оборудование.
- 7.34. Входить в защищаемое помещение после выпуска в него ГОТВ и ликвидации пожара до момента окончания проветривания разрешается только в изолирующих средствах защиты органов дыхания.
- 7.35. Вход в помещение без изолирующих средств защиты органов дыхания разрешается только после удаления продуктов горения, ГОТВ и продуктов его термического распада до безопасной величины (концентрации).
- 7.36. К установкам могут быть предъявлены дополнительные требо-вания безопасности, учитывающие условия их применения.
- 7.37. В части охраны окружающей среды установки должны соответствовать требованиям технической документации к огнетушащим веществам при эксплуатации, техническом обслуживании, испытании и ремонте.

8. УСТАНОВКИ ПОРОШКОВОГО ПОЖАРОТУШЕНИЯ МОДУЛЬНОГО ТИПА

Область применения

- 8.1. Установки порошкового пожаротушения (далее по тексту разде-ла установки) применяются для локализации и ликвидации пожаров клас-сов A, B, C и электрооборудования (электроустановок под напряжением).
- 8.2. При защите помещений, относящихся к взрывопожароопасной категории (категории А и Б по НПБ 105-95 и взрывоопасные зоны по ПУЭ), оборудование входящее в состав

установки, при его размещении в защищаемом помещении, должно иметь взрывобезопасное исполнение.

- 8.3. Установки могут применяться для локализации или тушения пожара на защищаемой площади, локального тушения на части площади или объема, тушения всего защищаемого объема (при соблюдении требо-ваний п.п. 8.14, 8.15, 8.24).
- 8.4. В помещениях с массовым пребыванием людей (театры, торго-вые комплексы и др.) установки должны выполняться в соответствии с требованиями ГОСТ 12.3.046 и требованиями раздела 11 (пп. 11.1-11.4, 11.11-11.16) настоящего документа.
- 8.5. Огнетушащие порошки должны соответствовать требованиям НПБ 170-98. При этом для импульсных модулей порошкового пожароту-шения параметр пробивного напряжения в расчет может не приниматься.
- 8.6. Для защиты помещений объемом не более 100 м3, где не преду-смотрено постоянное пребывание людей и посещение которых произво-дится периодически (по мере производственной необходимости), в кото-рых горючая загрузка не превышает 1000 МДж/м2, скорости воздушных потоков в зоне тушения не превышают 1,5 м/с, а также для защиты элек-трошкафов, кабельных сооружений и др., допускается, применение установок, осуществляющих только функции обнаружения и тушения пожара, а также передачи сигнала о пожаре.
- 8.7. Установки не обеспечивают полного прекращения горения и не должны применяться для тушении пожаров: горючих материалов, склонных с самовозгоранию и тлению внутри объема вещества (древесные опилки, хлопок, травяная мука и др.); химических веществ и их смесей, пирофорных и полимерных материалов, склонных к тлению и горению без доступа воздуха.

Проектирование

- 8.8. В проектной документации на установку должны быть отраже-ны параметры установки в соответствии с ГОСТ Р 51091 и правила ее экс-плуатации.
- 8.9. В зависимости от конструкции модуля порошкового пожароту-шения (далее по тексту раздела модули) установки могут быть с распределительным трубопроводом или без него.
- 8.10. По способу хранения вытесняющего газа в модуле (емкости) установки подразделяются на: закачные, с газогенерирующим элементом, с баллоном сжатого или сжиженного газа.
- 8.11. При размещении модулей в защищаемом помещении допускается отсутствие местного ручного пуска.
- 8.12. При расчете объема защищаемого помещения, в случае, когда оборудование и строительные конструкции выполнены из негорючих материалов, допускается вычитать их объем из расчетного объема помещения.
- 8.13. Локальная защита отдельных производственных зон, участков, агрегатов и оборудования производится в помещениях со скоростями воздушных потоков не более 1,5

- м/с, или с параметрами указанными в технической документации (ТД) на модуль порошкового пожаротушения.
- 8.14. За расчетную зону локального пожаротушения принимается увеличенный на 10 % размер защищаемой площади, увеличенный на 15 % размер защищаемого объема.
- 8.15. Тушение всего защищаемого объема помещения допускается предусматривать в помещениях со степенью негерметичности до 1,5 %. В помещениях объемом свыше 400 м, как правило, применяются способы пожаротушения локальный по площади или объему, или по всей площади.
- 8.16. Максимальная длина распределительных трубопроводов и тре-бования к ним регламентируются ТД на модули порошкового тушения, трубопроводы следует выполнять из стальных труб.
- 8.17. Соединения трубопроводов в установках пожаротушения должны быть сварными, фланцевыми или резьбовыми.
- 8.18. Трубопроводы и их соединения в установках пожаротушения должны обеспечивать герметичность при испытательном давлении, равном Рраб.
- 8.19. Трубопроводы и их соединения в установках пожаротушения должны обеспечивать прочность при испытательном давлении, равном 1,25 Рраб.
- 8.20. Модули и насадки-распылители должны размещаться в защи-щаемой зоне в соответствии с ТД на модули. При необходимости должна быть предусмотрена защита корпусов модулей и насадков-распылителей от возможного повреждения.
- 8.21. Конструкции, используемые для установки модулей или трубо-проводов с насадками-распылителями, должны выдерживать воздействие нагрузки, равной пятикратному весу устанавливаемых элементов, и обес-печивать их сохранность и защиту от случайных повреждений.
- 8.22. Должны быть предусмотрены мероприятия, исключающие возможность засорения насадков-распылителей установок.
- 8.23. Должен быть предусмотрен 100 % запас комплектующих, мо-дулей (не перезаряжаемых) и порошка для замены в установке, защищаю-щей наибольшее помещение или зону. Если на одном объекте применяет-ся несколько модулей разного типоразмера, то запас должен обеспечивать восстановление работоспособности установок каждым типоразмером мо-дулей. Запас должен храниться на складе объекта. Допускается отсутствие запаса на предприятии, если заключен договор о сервисном обслуживании установки. Модули порошкового пожаротушения следует размещать с учетом диапазона температур эксплуатации.

Модули с распределительным трубопроводом допускается распола-гать как в самом защищаемом помещении (в удалении от предполагаемой зоны горения), так и за его пределами в непосредственной близости от не-го, в специальной выгородке, боксе.

8.24. Расчет количества модулей, необходимого для пожаротушения, должен осуществляться из условия обеспечения равномерного заполнения огнетушащим порошком защищаемого объема или равномерного ороше-ния площади с учетом диграмм распыла (приведенных в ТД на модуль) в соответствии с рекомендуемым приложением 9.

- 8.25. Расположение насадков-распылителей производится в соответ-свии с ТД на модуль. Если высота защищаемого помещения выше, чем максимальная высота установки распылителей, то их размещение осуще-ствляется ярусами с учетом диграмм распыла.
- 8.26. При использовании установки (при обосновании в проекте) может применяться резервирование. При этом общее количество модулей удваивается по сравнению с расчетным и производится двухступенчатый запуск модулей. Для включения второй ступени допускается применение дистанционного управления.

Требования к защищаемым помещениям

- 8.27. Помещения, оборудованные установками порошкового пожаротушения, должны быть оснащены указателями о наличии в них установок. Перед входами в помещения (кроме помещений, указанных в п.8.6 настоящих норм), оборудованные УПП по ГОСТ 12.3.046, должна предусматриваться сигнализация в соответствии с ГОСТ 12.4.009 и п. 11.13 настоящего документа.
- 8.28. Степень негерметичности помещения при тушении по объему не должна превышать значений указанных в паспорте на модуль(в пас-порте при этом также должна быть указана величина коэффициента К4, п.1.1 приложение 9), в случае отсутствия таких данных степень негерме-тичности принимается в соответствии с п.8.15, расчет К4 по п. 1.1 приложения 9.
- 8.29. В помещениях, где предусмотрено тушение всего защищаемо-го объема, должны быть приняты меры по ликвидации необоснованных проемов, против самооткрывания дверей.
- 8.30. В системах воздуховодов общеобменной вентиляции, воздушного отопления и кондиционирования воздуха защищаемых помещений следует предусматривать воздушные затворы или противопожарные клапаны. Для удаления продуктов горения и порошка, витающего в воздухе, после окончания работы установки необходимо использовать общеобмен-ную вентиляцию. Допускается для этой цели применять передвижные вентиляционные установки. Осевший порошок удаляется пылесосом или влажной уборкой.

Требования безопасности

- 8.31. Проектирование установок следует проводить в соответствии с требованиями мер безопасности, изложенных в ГОСТ 12.1.019, ГОСТ 12.3.046, ГОСТ 12.2.003, ГОСТ 12.4.009, ГОСТ 12.1.005, ГОСТ 28130, ПУЭ-98, ПБ 10-115-96.
- 8.32. Устройства ручного дистанционного и местного пуска установок должны быть опломбированы, за исключением устройств ручного пуска, установленных в помещениях пожарных постов.
- 8.33. Установка должна обеспечивать задержку выпуска порошка на время, необходимое для эвакуации людей из защищаемого помещения, от-ключение вентиляции (кондиционирования и т. п.), закрытие заслонок (противопожарных клапанов и т. д.), но не менее 10 с от момента включе-ния в помещении устройств оповещения об эвакуации.

9. УСТАНОВКИ АЭРОЗОЛЬНОГО ПОЖАРОТУШЕНИЯ

Область применения

- 9.1. Автоматические установки аэрозольного пожаротушения (АУАП) применяются для тушения (ликвидации) пожаров подкласса А2 и класса В по ГОСТ 27331 объемным способом в помещениях объемом до 10000 м3, высотой не более 10 м и с параметром негерметичности, не превышающим указанного в таблице 12 Приложения 5. При этом допускается наличие в указанных помещениях горючих материалов, горение которых относится к пожарам подкласса А1 по ГОСТ 27331, в количествах, тушение пожара которых может быть осуществлено штатными ручными средствами, предусмотренными ППБ 01-93 и НПБ 155-96.
- 9.2. В помещениях категории A и Б по взрывопожароопасности по НПБ 105 и во взрывоопасных зонах по ПУЭ допускается применение ГОА, получивших соответствующее свидетельство о взрывозащищенности элекрооборудования, выданное в установленном порядке, и имеющих необходимый уровень взрывозащиты или степень защиты оболочки электриче-ских частей генератора. При этом, конструктивное устройство ГОА при его срабатывании должно исключать возможность воспламенения взрывоопасной смеси, которая может находиться в защищаемом помещении, что должно быть подтверждено соответствующим испытанием по методике, принятой в установленном порядке.
- 9.3 При проектировании установок должны быть приняты меры, ис-ключающие возможность возникновения загораний в защищаемых поме-щениях от применяемых ГОА.
- 9.4. Допускается применение установок для защиты кабельных со-оружений (полуэтажи, коллекторы, шахты) объемом до 3000 м3 и высотой не более 10 м, при значениях параметра негерметичности помещения не более 0,001 м-1 и при условии отсутствия в электросетях защищаемого сооружения устройств автоматического повторного включения.
- 9.5. Применение установок для тушения пожаров в помещениях с кабелями, электроустановками и электрооборудованием, находящимися под напряжением, допускается при условии, если значение напряжения не превышает предельно допустимого, указанного в ТД на конкретный тип ГОА.
- 9.6. Установки объемного аэрозольного пожаротушения не обеспечивают полного прекращения горения (ликвидации пожара) и не должны применяться для тушения: а) волокнистых, сыпучих, пористых и других горючих материалов, склонных к самовозгоранию и (или) тлению внутри слоя (объема) вещества (древесные опилки, хлопок, травяная мука и др.);
- б) химических веществ и их смесей, полимерных материалов, склон-ных к тлению и горению без доступа воздуха;
- в) гидридов металлов и пирофорных веществ;
- г) порошков металлов (магний, титан, цирконий и др.).
- 9.7. Использование по решению заказчика АУАП для локализации пожара веществ и материалов, указанных в п. 9.6 настоящих норм, не исключает необходимости оборудования помещений, в которых находятся или обращаются указанные вещества и материалы, установками пожаротушения, предусмотренными соответствующими нормами и правилами, ведомственными перечнями, другими действующими

нормативными документами, утвержденными и введенными в действие в установленном порядке.

- 9.8. Запрещается применение установок:
- а) в помещениях, которые не могут быть покинуты людьми до нача-ла работы генераторов;
- б) помещениях с большим количеством людей (50 человек и более);
- в) помещениях зданий и сооружений III и ниже степени огнестойко-сти по СНиП 21-01-97 применение установок с использованием генераторов огнетушащего аэрозоля, имеющих температуру более 400 оС за пределами зоны, отстоящей на 150 мм от внешней поверхности генератор

Проектирование

9.9. Установки должны иметь автоматическое и дистанционное включение. Приведение в действие ГОА должно осуществляться с помощью электрического пуска по алгоритму определяемому в соответствии с Приложением 10. Запрещается в составе установок использовать генерато-ров с комбинированным пуском. Местный пуск установок не допускается.

9.10. АУАП включает в себя:

- а) пожарные извещатели:
- б) приборы и устройства контроля и управления установки и ее элементами;
- в) устройства, обеспечивающие электропитание установки и ее элементов;
- г) шлейфы пожарной сигнализации, а также электрические цепи пи-тания, управления и контроля установки и ее элементов;
- д) генераторы огнетушащего аэрозоля;
- е) устройства, формирующие и выдающие командные импульсы на отключение систем вентиляции, кондиционирования, воздушного отопления и технологического оборудования в защищаемом помещении, на закрытие противопожарных клапанов, заслонок вентиляционных коробов и т. п.;
- ж) устройства для блокировки автоматического пуска установки с индикацией блокированного состояния при открывании дверей в защи-щаемое помещение;
- з) устройства звуковой и световой сигнализации и оповещения о срабатывании установки и наличии в помещении огнетушащего аэрозоля.
- 9.11. Исходными данными для расчета и проектирования АУАП яв-ляются:
- а) назначение помещения и степень огнестойкости ограждающих строительных конструкций здания (сооружения);
- б) геометрические размеры помещения (объем, площадь ограждаю-щих конструкций, высота);
- в) наличие и площадь постоянно открытых проемов и их распределение по высоте помещения;
- г) наличие и характеристика остекления;
- д) наличие и характеристика систем вентиляции, кондиционирования воздуха, воздушного отопления;
- е) перечень и показатели пожарной опасности веществ и материалов по ГОСТ 12.1.044, находящихся или обращающихся в помещении и соответствующий им класс (подкласс) пожара по ГОСТ 27331;
- ж) величина, характер, а также схема распределения пожарной на-грузки;
- з) расстановка и характеристика технологического оборудования;

- и) категория помещений по НПБ 105-95 и классы зон по ПУЭ;
- к) рабочая температура, давление и влажность в защищаемом поме-щении;
- л) наличие людей и возможность их эвакуации до пуска установки;
- м) нормативная огнетушащая способность выбранных типов генераторов (определяется по НПБ 60-97, для расчетов берется максимальное значение нормативной огнетушащей способности по отношению к пожароопасным веществам и материалам, находящимся в защищаемом помещении), другие параметры генераторов (высокотемпературные зоны, инерционность, время подачи и время работы);
- н) предельно допустимые давление и температура в защищаемом помещении (из условия прочности строительных конструкций или размещенного в помещении оборудования) в соответствии с требованиями пункта 6 ГОСТ Р 12.3.047-98.
- 9.12. Методика расчета установок представлена в обязательном При-ложении 10 к настоящим нормам.
- 9.13. Размещение генераторов в защищаемых помещениях должно исключать возможность воздействия высокотемпературных зон каждого генератора:
- а) зоны с температурой более 75 С на персонал, находящийся в защищаемом помещении или имеющий доступ в данное помещение (на случай несанкционированного или ложного срабатывания генератора);
- б) зоны с температурой более 200 С на хранимые или обращающиеся в защищаемом помещении сгораемые вещества и материалы, а также сгораемое оборудование;
- в) зоны с температурой более 400 С на другое оборудование.
- Данные о размерах опасных высокотемпературных зон генераторов необходимо принимать из технической документации на ГОА.
- 9.14. При необходимости следует предусматривать соответствующие конструктивные мероприятия (защитные экраны, ограждения и т. п.) с целью исключения возможности контакта персонала в помещении, а также сгораемых материалов и оборудования с опасными высокотемпературными зонами ГОА. Конструкция защитного ограждения генераторов должна быть включена в проектную документацию на данную установку и выполнена с учетом рекомендаций изготовителя примененных генераторов.
- 9.15. Размещение генераторов в помещениях должно обеспечивать заданную интенсивность подачи, создание огнетушащей способности аэ-розоля не ниже нормативной и равномерное заполнение огнетушащим аэ-розолем всего объема защищаемого помещения, с учетом требований, из-ложенных в пп. 9.13 и 9.21. При этом допускается размещение генераторов ярусами.

Размещать генераторов необходимо таким образом, чтобы исклю-чить попадание аэрозольной струи в створ постоянно открытых проемов в ограждающих конструкциях помещения.

- 9.16. Установка должна обеспечивать задержку выпуска огнетуша-щего аэрозоля в защищаемое помещение на время, необходимое для эвакуации людей после подачи звукового и светового сигналов оповещения о пуске генераторов, а также полной остановки вентиляционного оборудования, закрытия воздушных заслонок, противопожарных клапанов и т. п..), но не менее 30 с.
- 9.17. Генераторы следует размещать на поверхности ограждающих конструкций, опорах, колоннах, специальных стойках и т. п., изготовленных из несгораемых материалов, или должны быть предусмотрены специальные платы (кронштейны) из несгораемых

материалов под крепление генераторов с учетом требований безопасности, изложенных в технической документации на конкретный тип генератора.

9.18. Расположение генераторов в защищаемых помещениях должно обеспечивать возможность визуального контроля целостности их корпуса, клемм для подключения цепей пуска генераторов и возможность замены неисправного генератора новым.

Требования к защищаемым помещениям

- 9.19. Помещения, оборудованные автоматическими установками аэрозольного пожаротушения, должны быть оснащены указателями о наличии в них установок. У входов в защищаемые помещения должна предусматриваться сигнализация в соответствии с ГОСТ 12.4.009.
- 9.20. Исключен.
- 9.21. Помещения, оборудованные установками, должны быть по возможности герметизированы. Должны быть приняты меры против самооткрывания дверей от избыточного давления, определенного в соответствии с обязательным приложением 11 настоящих норм.
- 9.22. В системах воздуховодов общеобменной вентиляции, воздуш-ного отопления и кондиционирования воздуха защищаемых помещений необходимо предусматривать воздушные затворы или противопожарные клапаны в пределах противопожарных отсеков.
- 9.23. При пожаре необходимо предусматривать до включения установки автоматическое отключение систем вентиляции, воздушного отопления, кондиционирования, дымоудаления и подпора воздуха защищае-мых помещений, а также закрытие воздушных затворов или противопожарных клапанов. При этом время их полного закрытия не должно превышать 30 с.
- 9.24. Для удаления аэрозоля после окончания работы установки необходимо использовать общеобменную вентиляцию помещений. Допускается для этой цели применять передвижные вентиляционные установки.

Требования безопасности

- 9.25. При проектировании установки необходимо учитывать и со-блюдать требования безопасности, изложенные в технической документа-ции на генераторы и другие элементы установки, ГОСТ 2.601, ГОСТ 12.0.001, ПУЭ, настоящих норм, других действующих НТД, утвержденных и введенных в установленном порядке.
- 9.26. В проектах установок, а также в эксплуатационных документах должны быть предусмотрены мероприятия по исключению случайного пуска установок пожаротушения и воздействия опасных факторов работы генераторов на персонал (токсичности огнетушащего аэрозоля, высокой температуры аэрозольной струи и корпуса генераторов, травмирования че-ловека при его передвижении в условиях полной потери видимости).
- 9.27. Места, где проводятся испытания и ремонтные работы устано-вок, должны быть оборудованы предупреждающими знаками со смысло-вым значением "Осторожно! Прочие опасности" по ГОСТ 12.4.026 и пояс-няющей надписью "Идут испытания!" или "Ремонт", а также обеспечены инструкциями и правилами безопасности.

- 9.28. Входить в помещение после выпуска в него огнетушащего аэрозоля до момента окончания проветривания разрешается только после окончания работы установки в средствах защиты органов дыхания, преду-смотренных технической документацией на генераторы.
- 9.29. Перед сдачей в эксплуатацию установка должна подвергаться обкатке в течение не менее 1 месяца. При этом должны производиться фиксация автоматическим регистрационным устройством или в специаль-ном журнале учета дежурным персоналом (с круглосуточным пребывани-ем) всех случаев срабатывания пожарной сигнализации или управления автоматическим пуском установки с последующим анализом их причин. При отсутствии за это время ложных срабатываний или иных нарушений установка переводится в автоматический режим работы. Если за указан-ный период сбои продолжают иметь место, установка подлежит повторно-му регулированию и проверке.
- 9.30. Испытание работоспособности установки при комплексной проверке должно проводиться путем измерения сигналов, снимаемых с контрольных точек основных функциональных узлов извещателей и вто-ричных приборов по схемам, приведенным в ТД. При этом в качестве на-грузки на линии пуска могут быть использованы имитаторы генераторов огнетушащего аэрозоля, электрические характеристики которых должны соответствовать характеристикам устройств пуска генераторов.
- 9.31. Сдача смонтированной установки производится по результатам комплексной проверки и обкатки, при этом должно быть составлено заключение (акт) комиссии, определяющее техническое состояние, работоспособность и возможность ее эксплуатации. В состав комиссии по приемке в эксплуатацию установки должны входить представители администрации объекта, организаций, составивших техническое задание, выполняв-ших проект, монтаж установки.

10. АВТОНОМНЫЕ УСТАНОВКИ ПОЖАРОТУШЕНИЯ

- 10.1. Автономные установки пожаротушения (далее по тексту раздела установки) подразделяются по виду огнетушащего вещества на аэрозольные, водяные, пенные, газовые, порошковые и комбинированные.
- 10.2. В проектной и эксплуатационной документации на установки должны быть определены организационно-технические мероприятия, обеспечивающие контроль технического состояния данных установок.

11. АППАРАТУРА УПРАВЛЕНИЯ УСТАНОВОК ПОЖАРОТУШЕНИЯ

Общие требования к аппаратуре управления установок пожаротушения

- 11.1.Аппаратура управления установок пожаротушения должна обеспечивать:
- а) формирование команды на автоматический пуск установки пожа-ротушения при срабатывании двух или более пожарных извещателей, а для установок водяного и пенного пожаротушения, допускается формирование команды от двух датчиков давления. Включение датчиков давления долж-но осуществляться по схеме "или";
- б) автоматическое переключение цепей питания с основного ввода электроснабжения на резервный при исчезновении напряжения на основ-ном вводе, с последующим переключением на основной ввод электро-снабжения при восстановлении напряжения на нем:
- в) возможность отключения и восстановления режима автоматиче-ского пуска установки (

для установок водяного и пенного пожаротушения - насосов);

- г) автоматический контроль:
- соединительных линий между приемно-контрольными приборами пожарной сигнализации и приборами управления, предназначенными для выдачи команды на автоматическое включение установки (для установок водяного и пенного пожаротушения пожарных насосов, насосов-дозаторов) на обрыв и короткое замыкание;
- соединительных линий световых и звуковых оповещателей на обрыв и короткое замыкание:
- электрических цепей дистанционного пуска установки пожаротуше-ния на обрыв и короткое замыкание; (рекомендуемое).
- д) контроль исправности световой и звуковой сигнализации (по вы-зову), в том числе оповещателей;
- е) отключение звуковой сигнализации при сохранении световой сиг-нализации (на приборе);
- ж) автоматическое включение звуковой сигнализации при поступле-нии следующего сигнала о пожаре от системы пожарной сигнализации;
- 3) формирование команды на управление технологическим оборудо-ванием и инженерными системами объекта (при необходимости);
- и) формирование команды на отключение вентиляции (при необхо-димости);
- к) формирование команды на включение системы оповещения (при необходимости).
- 11.2. Устройства отключения и восстановления режима автоматического пуска установок должны быть размещены в помещении дежурного поста или другом помещении, с персоналом, ведущим круглосуточное дежурство.

При наличии защиты от несанкционированного доступа устройства восстановления автоматического пуска могут быть размещены у входов в защищаемые помещения.

Общие требования к сигнализации

- 11.3. В помещении пожарного поста или другом помещении с персо-налом, ведущим круглосуточное дежурство, должна быть предусмотрена:
- а) световая и звуковая сигнализация:
- о возникновении пожара (с расшифровкой по направлениям или по-мещениям в случае применения адресных систем пожарной сигнализации);
- о срабатывании установки (с расшифровкой по направлениям или помещениям);
- б) световая сигнализация:
- о наличии напряжения на основном и резервном вводах электро-снабжения;
- об отключении звуковой сигнализации о пожаре (при отсутствии ав-томатического восстановления сигнализации);
- об отключении звуковой сигнализации о неисправности (при отсут-ствии автоматического восстановления сигнализации);
- 11.4. Звуковой сигнал о пожаре должен отличаться тональностью или характером звука от сигнала о неисправности и срабатывании установки.

Установки водяного и пенного пожаротушения

- 11.5. Кроме общих требований аппаратура управления установок во-дяного и пенного пожаротушения должна обеспечивать:
- а) автоматический пуск рабочих насосов (пожарных и насосов-дозаторов);

- б) автоматический пуск резервных насосов (пожарного и насоса-дозатора) в случае отказа пуска или невыхода рабочих насосов на режим в течение установленного времени;
- в) автоматическое включение электроприводов запорной арматуры;
- г) автоматический пуск и отключение дренажного насоса;
- д) местный, а при необходимости дистанционный пуск и отключение насосов (за исключением спринклерных систем);
- е) автоматическое и местное управление устройствами компенсации утечки огнетушащего вещества и сжатого воздуха из трубопроводов и гидропневматических емкостей; ж) автоматический контроль:
- электрических цепей запорных устройств с электроприводом на обрыв; электрических цепей приборов, регистрирующих срабатывание узлов управления, формирующих команду на автоматическое включение пожарных насосов и насосовдозаторов на обрыв и короткое замыкание;
- з) автоматический контроль аварийного уровня в резервуаре, в дренажном приямке, в емкости с пенообразователем при раздельном хранении;
- и) автоматический контроль давления в гидропневмобаке;
- к) временную задержку на запуск установки пожаротушения (при необходимости);
- 11.6. В установках объемного пенного пожаротушения для защищаемых помещений с возможным пребыванием людей следует предусматривать устройства переключения автоматического пуска установки на дистанционный с выдачей светового и звукового сигналов об отключении автоматического пуска в помещении пожарного поста.
- 11.7. В помещении насосной станции следует размещать следующие устройства: местного пуска и остановки насосов (допускается осуществлять пуск и остановку пожарных насосов из помещения дежурного поста); местного пуска и остановки компрессора.

Требования к сигнализации

- 11.8. В помещениях, защищаемых установками объемного пенного пожаротушения, и перед входами в них должна предусматриваться сигнализация в соответствии с ГОСТ 12.4.009. Смежные помещения, имеющие выход только через защищаемые помещения, должны быть оборудованы аналогичной сигнализацией.
- Перед входами в защищаемые помещения необходимо предусматривать световую сигнализацию об отключении автоматического пуска установки.
- 11.9. В помещении пожарного поста или другом помещении с персоналом, ведущим круглосуточное дежурство, кроме общих требований, должна быть предусмотрена:
- а) световая и звуковая сигнализация:
- о пуске насосов; *
- о начале работы установки с указанием направлений, по которым подаётся огнетушащее вещество;*
- *Примечание. Рекомендуется подача кратковременного звукового сигнала.
- об отключении автоматического пуска насосов и установки;
- о неисправности установки по п. 11.1 г), п. 11.5 ж) и и), исчезнове-нии напряжения на основном и резервном вводах электроснабжения уста-новки, об отсутствии полного открытия задвижек запорных устройств с электроприводом в режиме подачи команды на их открытие, неисправно-сти цепей электроуправления запорных устройств, о снижении ниже до-пустимого уровня воды и давления воздуха (звуковой сигнал общий).
- об аварийном уровне в пожарном резервуаре, ёмкости с пенообразо-вателем, дренажном приямке (общий сигнал);

- б) световая сигнализация:
- о положении задвижек с электроприводом (открыты, закрыты).
- 11.10. В помещении насосной станции следует предусматривать све-товую сигнализацию:
- а) о наличии напряжения на основном и резервном вводах электро-снабжения;
- б) об отключении автоматического пуска пожарных насосов, насо-сов-дозаторов, дренажного насоса;
- в) о неисправности электрических цепей приборов, регистрирующих срабатывание узлов управления и выдающих команду на включение уста-новки и запорных устройств (с расшифровкой по направлениям);
- г) о неисправности электрических цепей управления задвижками за-порных устройств с электроприводом (с расшифровкой по направлениям);
- д) об отсутствии полного открытия задвижек запорных устройств с электроприводом в режиме подачи команды на их открытие (с расшифров-кой по направлениям);
- е) об аварийном уровне в пожарном резервуаре, емкости с пенообра-зователем, в дренажном приямке (общий сигнал).

Если электрозадвижки установлены не в помещении насосной стан-ции, то сигналы, указанные в абзацах г) и д) настоящего пункта, выдаются по месту установки электрозадвижек.

Установки газового и порошкового пожаротушения

- 11.11. Кроме общих требований аппаратура управления автоматическими установками газового и порошкового пожаротушения (далее по тексту этого подраздела установками), должна обеспечивать:
- а) дистанционный пуск установки (у входов в защищаемые помещения, допускается в помещении пожарного поста);
- б) автоматический контроль:
- электрических цепей управления пусковыми устройствами и цепей пусковых устройств на обрыв;
- давления в пусковых баллонах и побудительном трубопроводе, для АУГП;
- в) задержку выпуска огнетушащего вещества (после подачи светово-го и звукового оповещения о пожаре) при автоматическом и дистанционном пуске на время, необходимое для эвакуации людей, остановки вентиляционного оборудования, закрытия воздушных заслонок, противопожар-ных клапанов и т. д., но не менее, чем на 10 с. Необходимое время эвакуа-ции из защищаемого помещения следует определять по ГОСТ 12.1.004;
- к) отключение автоматического и дистанционного пуска установки с индикацией отключенного состояния при открывании дверей в защищае-мое помещение;
- 11.12. Устройства дистанционного пуска установок следует размещать у эвакуационных выходов снаружи защищаемого помещения. Указанные устройства должны быть защищены в соответствии с ГОСТ 12.4.009. Размещение устройств дистанционного пуска допускается в помещении пожарного поста или другом помещении с персоналом, ведущим круг-лосуточное дежурство.
- 11.13. На дверях в защищаемые помещения необходимо предусматривать устройства, выдающие сигнал на отключение автоматического пуска установки при их открывании. Устройствами отключения автоматического пуска установок порош-кового пожаротушения допускается не оборудовать помещения объемом не более 100 м3, где не

предусмотрено постоянное пребывание людей и посещение которых производится периодически (по мере производственной необходимости), в которых горючая загрузка не превышает 1000 МДж/м2, а также электрошкафы, кабельные сооружения. Устройства восстановления автоматического пуска, защищенные от несанкционированного доступа, при необходимости могут устанавливаться у входа в зашишаемое помещение

Требования к сигнализации

11.14. В помещениях, защищаемых автоматическими установками газового или порошкового пожаротушения, и перед входами в них должна предусматриваться сигнализация в соответствии с ГОСТ 12.4.009. Смежные помещения, имеющие выходы только через защищаемые помещения, должны быть оборудованы аналогичной сигнализацией.

Перед входами в защищаемые помещения необходимо предусматривать сигнализацию об отключении автоматического пуска установки.

- 11.15. В помещении пожарного поста или другом помещении с персоналом, ведущим круглосуточное дежурство, должна быть предусмотрена:
- а) световая и звуковая сигнализация:
- о неисправности установки: по п. 11.1 -г); п.11.11 -б); падении давления в побудительных трубопроводах и пусковых баллонах до предельно допустимого значения, указанного в технической документации на АУГП; исчезновении напряжения на основном и резервном вводах электроснабжения (звуковой сигнал общий);
- б) световая сигнализация:
- об отключении автоматического пуска (с расшифровкой по защищаемым направлениям или помещениям);
- 11.16. В помещении станции пожаротушения должна быть визуальная индикация о падении давления в побудительных трубопроводах и пусковых баллонах.

Установки аэрозольного пожаротушения

- 11.17. Кроме общих требований аппаратура управления автоматиче-скими установками аэрозольного пожаротушения (далее по тексту этого подраздела установками), должна обеспечивать:
- а) дистанционный пуск установки (у входов в защищаемые помеще-ния, допускается в помещении пожарного поста);
- б) автоматический контроль электрических цепей управления пусковыми устройствами и цепей пусковых устройств на обрыв;
- в) задержку выпуска огнетушащего вещества на время, необходимое для эвакуации людей, остановки вентиляционного оборудования, систем кондиционирования, закрытия воздушных заслонок, противопожарных клапанов и т. д. после подачи светового и звукового оповещения о пожаре, но не менее чем на 10 с. Необходимое время эвакуации из защищаемого помещения следует определять по ГОСТ 12.1.004;
- г) отключение автоматического пуска установки с индикацией отключенного состояния при открывании дверей в защищаемое помещение;
- 11.18. Устройства дистанционного пуска установок следует размещать у эвакуационных выходов снаружи защищаемого помещения. Указанные устройства должны быть

зашишены в соответствии с ГОСТ 12.4.009.

Размещение устройств дистанционного пуска допускается в помещениях пожарного поста или другом помещении с персоналом, ведущим круглосуточное дежурство.

11.19. На дверях в защищаемые помещения необходимо предусмат-ривать устройства, выдающие сигнал на отключение автоматического пуска пуск установки при их открывании.

Размещение устройств отключения и восстановления автоматического пуска должно производиться в помещении пожарного поста или в другом помещении с персоналом, ведущим круглосуточное дежурство.

Устройства восстановления автоматического пуска, защищенные от несанкционированного доступа, при необходимости могут устанавливаться у входа в защищаемое помещение.

Требования к сигнализации

11.20. В помещениях, защищаемых автоматическими установками аэрозольного пожаротушения, и перед входами в них должна предусматриваться сигнализация в соответствии с ГОСТ 12.4.009.

Смежные помещения, имеющие выходы только через защищаемые помещения, должны быть оборудованы аналогичной сигнализацией.

Перед входами в защищаемые помещения необходимо предусматривать сигнализацию об отключении автоматического пуска установки.

- 11.21. В помещении пожарного поста или другом помещении с пер-соналом, ведущим круглосуточное дежурство, кроме общих требований должна быть предусмотрена: а) световая и звуковая сигнализация:
- а) световая и звуковая сигнализация:
- о неисправности установки по: п.11.1 г), п.11.17 б), об исчезновении напряжения на основном и резервном вводах электроснабжения (звуковой сигнал общий);
- б) световая сигнализация:
- об отключении автоматического пуска (с расшифровкой по защи-щаемым помещениям); Примечание. В случае применения дымовых пожарных извещателей для защиты объекта в комплекте с автоматической установкой аэрозольного пожаротушения необходимо предусматривать мероприятия, исключающие ложные срабатывания указанных извещателей в помещениях, в которые возможно попадание аэрозольных продуктов от сработавших генераторов огнетушащего аэрозоля.

Установки тушения тонкораспыленной водой

- 11.22. Кроме общих требований аппаратура управления автоматиче-скими установками пожаротушения тонкораспыленной водой (далее по тексту этого подраздела установками), должна обеспечивать:
- а) дистанционный пуск установки (у входов в защищаемое помещение);
- б) автоматический контроль электрических цепей управления пусковыми устройствами и цепей пусковых устройств на обрыв.
- 11.23. Устройства дистанционного пуска установок следует размещать у эвакуационных выходов снаружи защищаемого помещения. Ука-занные устройства должны быть защищены в соответствии с ГОСТ 12.4.009.

Размещение устройств дистанционного пуска допускается в помеще-ниях пожарного поста или другом помещении с персоналом, ведущим круглосуточное дежурство.

11.24. Исключен.

Требования к сигнализации

- 11.25. Исключен.
- 11.26. В помещении пожарного поста или другом помещении с персоналом, ведущим круглосуточное дежурство, кроме общих требований, должна быть предусмотрена: а) световая и звуковая сигнализация о неисправности установки: по п.11.1 г), п. 11.22 б), об исчезновении напряжения на основном и резервном вводах электроснабжения (звуковой сигнал общий);
- б) световая сигнализация:
- об отключении автоматического пуска (с расшифровкой по защищаемым помещениям);

12. СИСТЕМЫ ПОЖАРНОЙ СИГНАЛИЗАЦИИ

Общие положения при выборе типов пожарных извещателей для защищаемого объекта

- 12.1. Выбор типа точечного дымового пожарного извещателя реко-мендуется производить в соответствии с его способностью обнаруживать различные типы дымов, которая может быть определена по ГОСТ Р 50898.
- 12.2. Пожарные извещатели пламени следует применять, если в зоне контроля в случае возникновения пожара на его начальной стадии предполагается появление открытого пламени.
- 12.3. Спектральная чувствительность извещателя пламени должна соответствовать спектру излучения пламени горючих материалов, находящихся в зоне контроля извещателя.
- 12.4. Тепловые пожарные извещатели следует применять, если в зоне контроля в случае возникновения пожара на его начальной стадии предполагается значительное тепловыделение.
- 12.5. Дифференциальные и максимально-дифференциальные тепловые пожарные извещатели следует применять для обнаружения очага пожара, если в зоне контроля не предполагается перепадов температуры, не связанных с возникновением пожара, способных вызвать срабатывание пожарных извещателей этих типов.

Максимальные тепловые пожарные извещатели не рекомендуется применять в помещениях, где температура воздуха при пожаре может не достигнуть температуры срабатывания извещателей или достигнет её через недопустимо большое время Примечание. За исключением случаев, когда применение других извещателей невозможно или нецелесообразно.

12.6. При выборе тепловых пожарных извещателей следует учитывать, что температура срабатывания максимальных и максимально-дифференциальных извещателей должна

быть не менее чем на 20 С выше максимально допустимой температуры воздуха в помещении.

- 12.7. Газовые пожарные извещатели рекомендуется применять, если в зоне контроля в случае возникновения пожара на его начальной стадии предполагается выделение определенного вида газов в концентрациях, которые могут вызвать срабатывание извещателей. Газовые пожарные извещатели не следует применять в помещениях, в которых в отсутствие пожара могут появляться газы в концентрациях, вызывающих срабатывание из-вещателей.
- 12.8. В том случае, когда в зоне контроля доминирующий фактор пожара не определен, рекомендуется применять комбинацию пожарных извещателей, реагирующих на различные факторы пожара, или комбинированные пожарные извещатели.
- 12.9. Выбор типов пожарных извещателей в зависимости от назначения защищаемых помещений и вида горючей нагрузки рекомендуется производить в соответствии с приложением 12.
- 12.10. Пожарные извещатели следует применять в соответствии с требованиями государственных стандартов, норм пожарной безопасности, технической документации и с учетом климатических, механических, электромагнитных и других воздействий в местах их размещения.
- 12.11. Пожарные извещатели, предназначенные для выдачи извеще-ния для управления АУП, дымоудаления, оповещения о пожаре, должны быть устойчивы к воздействию электромагнитных помех со степенью же-сткости не ниже второй по НПБ 57-97.
- 12.12. Дымовые пожарные извещатели, питаемые по шлейфу пожар-ной сигнализации и имеющие встроенный звуковой оповещатель, реко-мендуется применять для оперативного, локального оповещения и опреде-ления места пожара в помещениях, в которых одновременно выполняются следующие условия:
- -основным фактором возникновения очага загорания в начальной стадии является появление дыма;
- -в защищаемых помещениях возможно присутствие людей.

Такие извещатели должны включаться в единую систему пожарной сигнализации с выводом тревожных извещений на прибор приемно-контрольный пожарный, расположенный в помещении дежурного персонала.

Примечания:

- 1. Данные извещатели рекомендуется применять в гостиницах, в лечебных учреждениях, в экспозиционных залах музеев, в картинных галереях, в читальных залах библиотек, в помещениях торговли, в вычислительных центрах.
- 2. Применение данных извещателей не исключает оборудование здания систе-мой оповещения в соответствии с НПБ 104.

Требования к организации зон контроля пожарной сигнализации

12.13. Одним шлейфом пожарной сигнализации с пожарными извещателями, не имеющими адреса, допускается оборудовать зону контроля, включающую: помещения, расположенные не более чем на 2-х сообщающихся между собой этажах, при суммарной площади помещений 300 м2 и менее;

до десяти изолированных и смежных помещений, суммарной площадью не более 1600 м2, расположенных на одном этаже здания, при этом изолированные помещения должны иметь выход в общий коридор, холл, вестибюль и т. п.;

до двадцати изолированных и смежных помещений, суммарной площадью не более 1600 м2, расположенных на одном этаже здания, при этом изолированные помещения должны иметь выход в общий коридор, холл, вестибюль и т. п., при наличии выносной световой сигнализации о срабатывании пожарных извещателей над входом в каждое контролируемое помещение.

Шлейфы пожарной сигнализации должны объединять помещения таким образом, чтобы было обеспечено необходимое время установления места возникновения пожара.

12.14. Максимальное количество и площадь помещений, защищаемых одним кольцевым или радиальным шлейфом с адресными пожарными извещателями, определяется техническими возможностями приемно-контрольной аппаратуры, техническими характеристиками включаемых в шлейф извещателей и не зависит от расположения помещений в здании.

Размещение пожарных извещателей

- 12.15. Количество автоматических пожарных извещателей определя-ется необходимостью обнаружения загораний на контролируемой площади помещений или зон помещений, а количество извещателей пламени и по контролируемой площади оборудования.
- 12.16. В каждом защищаемом помещении следует устанавливать не менее двух пожарных извещателей.
- 12.17. В защищаемом помещении допускается устанавливать один пожарный извещатель, если одновременно выполняются следующие условия:
- а) площадь помещения не больше площади, защищаемой пожарным извещателем, указанной в технической документации на него, и не больше средней площади, указанной в таблицах 5, 8;
- б) обеспечивается автоматический контроль работоспособности пожарного извещателя, подтверждающий выполнение им своих функций с выдачей извещения о неисправности на приемно-контрольный прибор;
- в) обеспечивается идентификация неисправного извещателя приемно-контрольным прибором;
- г) по сигналу с пожарного извещателя не формируется сигнал на запуск аппаратуры управления, производящей включение автоматических установок пожаротушения или дымоудаления или систем оповещения о пожаре 5-го типа по НПБ 104.
- 12.18. Точечные пожарные извещатели, кроме извещателей пламени, следует устанавливать, как правило, под перекрытием. При невозможности установки извещателей непосредственно под перекрытием допускается их установка на стенах, колоннах и других несущих строительных конструк-циях, а также крепление на тросах. При установке точечных пожарных извещателей под перекрытием их следует размещать на расстоянии от стен не менее 0,1 м.

При установке точечных извещателей на стенах их следует размещать на расстоянии не менее 0,1 м от угла стен и на расстоянии от 0,1 до 0,3 м от перекрытия, включая габариты извешателя.

При подвеске извещателей на тросе должны быть обеспечены их устойчивое положение и ориентация в пространстве. При этом расстояние от потолка до нижней точки извещателя должно быть не более 0,3м.

12.19. Размещение точечных тепловых и дымовых пожарных извещателей следует производить с учетом воздушных потоков в защищаемом помещении, вызываемых

приточной или вытяжной вентиляцией, при этом расстояние от извещателя до вентиляционного отверстия должно быть не менее 1 м.

12.20. Точечные дымовые и тепловые пожарные извещатели следует устанавливать в каждом отсеке потолка шириной 0,75 м и более, ограниченном строительными конструкциями (балками, прогонами, ребрами плит и т. п.), выступающими от потолка на расстояние более 0,4 м.

Если строительные конструкции выступают от потолка на расстоя-ние более 0,4 м, а образуемые ими отсеки по ширине меньше 0,75 м, кон-тролируемая пожарными извещателями площадь, указанная в таблицах 5, 8, уменьшается на 40 %. При наличии на потолке выступающих частей от 0,08 до 0,4 м контролируемая пожарными извещателями площадь, указанная в таблицах 5, 8, уменьшается на 25 %. При наличии в контролируемом помещении коробов, технологиче-ских площадок шириной 0,75 м и более, имеющих сплошную конструкцию, отстоящую по нижней отметке от потолка на расстоянии более 0,4 м и не менее 1,3 м от плоскости пола, под ними необходимо дополнительно устанавливать пожарные извещатели.

- 12.21. Точечные дымовые и тепловые пожарные извещатели следует устанавливать в каждом отсеке помещения, образованном штабелями материалов, стеллажами, оборудованием и строительными конструкциями, верхние края которых отстоят от потолка на 0,6 м и менее.
- 12.22. При установке точечных дымовых пожарных извещателей в помещениях шириной менее 3 м или под фальшполом или над фальшпотолком и в других пространствах высотой менее 1,7 м расстояние между извещателями, указанные в таблице 5, допускается увеличивать в 1,5 раза.
- 12.23. Пожарные извещатели, установленные под фальшполом, над фальшпотолком, должны быть адресными, либо подключены к самостоятельным шлейфам пожарной сигнализации и должна быть обеспечена возможность определения их места расположения. Конструкция перекрытий фальшпола и фальшпотолка должна обеспечивать доступ к пожарным из-вещателям для их обслуживания.
- 12.24. Установку пожарных извещателей следует производить в соответствии с требованиями технической документации на данный извещатель.
- 12.25. В местах, где имеется опасность механического повреждения извещателя, должна быть предусмотрена защитная конструкция, не нарушающая его работоспособности и эффективности обнаружения загорания.
- 12.26. В случае установки в одной зоне контроля разнотипных пожарных извещателей, их размещение производится в соответствии с требованиями настоящих норм на каждый тип извещателя.
- 12.27. В случае применения комбинированных (тепловой-дымовой) пожарных извещателей их следует устанавливать в соответствии с таблицей 8.

Точечные дымовые пожарные извещатели

12.28. Площадь, контролируемая одним точечным дымовым пожарным извещателем, а также максимальное расстояние между извещателями и извещателем и стеной, за

исключением случаев, оговоренных в п.12.20, необходимо определять по таблице 5, но, не превышая величин, указанных в технических условиях и паспортах на извещатели.

Таблица 5

Высота защищаемого помещения, м	Средняя площадь,	Максимальное расстояние, м	
	, контролируемая одним	между	от извещателя
	извещателем, м2	извещателями	до стены
До 3,5	До 85	9,0	4,5
Св. 3,5 до 6,0	До 70	8,5	4,0
Св. 6,0 до 10,0	До 65	8,0	4,0
Св. 10,5 до 12,0	До 55	7,5	3,5

Линейные дымовые пожарные извещатели

- 12.29. Излучатель и приемник линейного дымового пожарного извещателя следует устанавливать на стенах, перегородках, колоннах и других конструкциях таким образом, чтобы их оптическая ось проходила на расстоянии не менее 0,1 м от уровня перекрытия.
- 12.30. Излучатель и приемник линейного дымового пожарного извещателя следует размещать на строительных конструкциях помещения таким образом, чтобы в зону обнаружения пожарного извещателя не попадали различные объекты при его эксплуатации. Расстояние между излучателем и приемником определяется технической характеристикой пожарного извещателя.
- 12.31. При контроле защищаемой зоны двумя и более линейными дымовыми пожарными извещателями, максимальное расстояние между их параллельными оптическими осями, оптической осью и стеной в зависимости от высоты установки блоков пожарных извещателей следует определять по таблице 6.

Таблица 6.

Высота установки извещателя, м	Максимальное расстояние между оптическими осями извещателей,	1
	M	стены, м
До 3,5	9,0	4,5
Св. 3,5 до 6,0	8,5	4,0
Св. 6,0 до 10,0	8,0	4,0
Св. 10, 0 до 12,0	7,5	3,5

- 12.32. В помещениях высотой свыше 12 и до 18 м извещатели следует, как правило, устанавливать в два яруса, в соответствии с таблицей 7, при этом: первый ярус извещателей следует располагать на расстоянии 1,5-2 м от верхнего уровня пожарной нагрузки, но не менее 4 м от плоскости пола; второй ярус извещателей следует располагать на расстоянии не более 0,4 м от уровня перекрытия.
- 12.33. Извещатели следует устанавливать таким образом, чтобы минимальное расстояние от его оптической оси до стен и окружающих предметов было не менее 0,5 м. Кроме того, минимальное расстояние между их оптическими осями, от оптических осей до стен и окружающих предметов, во избежание взаимных помех, должно быть установлено в соответствии с требованиями технической документации.

таблица 7.

Высота Защищаемого	Средняя площадь,	Максимальное расстояние, м	
помещения, м	контролируемая одним	между	от извещателя
помещения, м	извещателем, м2	извещателями	до стены
До 3,5	До 25	5,0	2,5
Св. 3,5 до 6,0	До 20	4,5	2,0
Св. 6,0 до 9,0	До 15	4.0	2,0

12.35. Тепловые пожарные извещатели следует располагать с учетом исключения влияния на них тепловых воздействий, не связанных с пожаром.

Линейные тепловые пожарные извещатели

- 12.36. Линейные тепловые пожарные извещатели (термокабель), следует, как правило, прокладывать в непосредственном контакте с пожарной нагрузкой.
- 12.37. Линейные тепловые пожарные извещатели допускается уста-навливать под перекрытием над пожарной нагрузкой, в соответствии с таблицей 8, при этом, значения величин, указанных в таблице, не должны превышать соответствующих значений величин, указанных в технической документации изготовителя.

Расстояние от извещателя до перекрытия должно быть не менее 15мм.

При стеллажном хранении материалов допускается прокладывать извещатели по верху ярусов и стеллажей.

Извещатели пламени

12.38. Пожарные извещатели пламени должны устанавливаться на перекрытиях, стенах и других строительных конструкциях зданий и сооружений, а также на технологическом оборудовании.

Размещение извещателей пламени необходимо производить с учетом исключения возможных воздействий оптических помех.

- 12.39. Каждая точка защищаемой поверхности должна контролиро-ваться не менее чем двумя извещателями пламени, а расположение изве-щателей должно обеспечивать контроль защищаемой поверхности, как правило, с противоположных направлений.
- 12.40. Контролируемую извещателем пламени площадь помещения или оборудования следует определять, исходя из значения угла обзора извещателя и в соответствии с его классом по НПБ 72-98 (максимальной дальностью обнаружения пламени горючего материала), указанным в тех-нической документации.

Ручные пожарные извещатели

- 12.41. Ручные пожарные извещатели следует устанавливать на стенах и конструкциях на высоте 1,5 м от уровня земли или пола. Места установки ручных пожарных извещателей приведены в при-ложении 13.
- 12.42. Ручные пожарные извещатели следует устанавливать в местах, удалённых от электромагнитов, постоянных магнитов, и других устройств, воздействие которых может вызвать самопроизвольное срабатывание руч-ного пожарного извещателя (требование распространяется на ручные по-жарные извещатели, срабатывание которого происходит при переключе-нии магнитоуправляемого контакта) на расстоянии: не более 50 м друг от друга внутри зданий;

не более 150 м друг от друга вне зданий;

не менее 0,75м до извещателя не должно быть различных органов управления и предметов, препятствующих доступу к извещателю.

12.43. Освещенность в месте установки ручного пожарного извеща-теля должна быть не менее 50 лк.

Газовые пожарные извещатели.

12.44. Газовые пожарные извещатели следует устанавливать в поме-щениях на потолке, стенах и других строительных конструкциях зданий и сооружений в соответствии с инструкцией по эксплуатации этих извещателей и рекомендациями специализированных организаций.

Приборы приемно-контрольные пожарные, приборы управления пожарные. Аппаратура и ее размещение

- 12.45. Приборы приемно-контрольные, приборы управления и другое оборудование следует применять в соответствии с требованиями государственных стандартов, норм пожарной безопасности, технической докумен-тации и с учетом климатических, механических, электромагнитных и других воздействий в местах их размещения.
- 12.46. Приборы, по сигналу с которых производится запуск автоматической установки пожаротушения или дымоудаления или оповещения о пожаре, должны быть устойчивы к воздействию внешних помех со степенью жесткости не ниже второй по НПБ 57.
- 12.47. Резерв емкости приемно-контрольных приборов (количество шлейфов), предназначенных для работы с неадресными пожарными извещателями, должен быть не менее 10 % при числе шлейфов 10 и более.
- 12.48. Приборы приемно-контрольные и приборы управления, как правило, следует устанавливать в помещении с круглосуточным пребыванием дежурного персонала. В обоснованных случаях допускается установка этих приборов в помещениях без персонала, ведущего круглосуточное дежурство, при обеспечении раздельной передачи извещений о пожаре и о неисправности в помещение с персоналом, ведущим круглосуточное дежурство, и обеспечении контроля каналов передачи извещений. В указанном случае, помещение, где установлены приборы, должно быть оборудовано охранной и пожарной сигнализацией и защищено от несанкциониро-ванного доступа.
- 12.49. Приборы приемно-контрольные и приборы управления следует устанавливать на стенах, перегородках и конструкциях, изготовленных из негорючих материалов. Установка указанного оборудования допускается на конструкциях, выполненных из горючих материалов, при условии защиты этих конструкций стальным листом толщиной не менее 1 мм или другим листовым негорючим материалом толщиной не менее 10 мм. При этом листовой материал должен выступать за контур устанавливаемого оборудования не менее, чем на 100 мм.
- 12.50. Расстояние от верхнего края приемно-контрольного прибора и прибора управления до перекрытия помещения, выполненного из горючих материалов, должно быть не менее 1 м.
- 12.51. При смежном расположении нескольких приемно-контрольных приборов и приборов управления расстояние между ними должно быть не менее 50 мм.

- 12.52. Приборы приемно-контрольные и приборы управления следует размещать таким образом, чтобы высота от уровня пола до оперативных органов управления указанной аппаратуры была 0,8-1,5 м.
- 12.53. Помещение пожарного поста или помещение с персоналом, ведущим круглосуточное дежурство, должно располагаться, как правило, на первом или в цокольном этаже здания. Допускается размещение ука-занного помещения выше первого этажа, при этом выход из него должен быть в вестибюль или коридор, примыкающий к лестничной клетке, имеющей непосредственный выход наружу здания.
- 12.54. Расстояние от двери помещения пожарного поста или поме-щения с персоналом, ведущим круглосуточное дежурство, до лестничной клетки ведущей наружу, не должно превышать, как правило, 25 м.
- 12.55. Помещение пожарного поста или помещение с персоналом, ведущим круглосуточное дежурство, должно обладать следующими ха-рактеристиками: площадь, как правило, не менее 15 м2;

температура воздуха в пределах 18-25 °C при относительной влаж-ности не более 80 %; наличие естественного и искусственного освещения, а также аварий-ного освещения, которое должно соответствовать СНиП 23.05-95;

освещенность помещений:

при естественном освещении - не менее 100 лк;

от люминесцентных ламп - не менее 150 лк:

от ламп накаливания - не менее 100 лк;

при аварийном освещении - не менее 50 лк;

наличие естественной или искусственной вентиляции согласно СНиП 2.04.05-91; наличие телефонной связи с пожарной частью объекта или населен-ного пункта. не должны устанавливаться аккумуляторные батареи резервного пи-тания кроме герметизированных.

12.56. В помещении дежурного персонала, ведущего круглосуточное дежурство, аварийное освещение должно включаться автоматически при отключении основного освещения.

Шлейфы пожарной сигнализации. Соединительные и питающие линии систем пожарной сигнализации и аппаратуры управления

- 12.57. Выбор проводов и кабелей, способы их прокладки для органи-зации шлейфов и соединительных линий пожарной сигнализации должен производиться в соответствии с требованиями ПУЭ, СНиП 3.05.06-85, ВСН 116-87, требованиями настоящего раздела и технической документа-ции на приборы и оборудование системы пожарной сигнализации.
- 12.58. Шлейфы пожарной сигнализации необходимо выполнять с условием обеспечения автоматического контроля целостности их по всей длине.
- 12.59. Шлейфы пожарной сигнализации следует выполнять само-стоятельными проводами и кабелями с медными жилами.

Шлейфы пожарной сигнализации, как правило, следует выполнять проводами связи, если технической документацией на приборы приемно-контрольные пожарные не предусмотрено применение специальных типов проводов или кабелей.

- 12.60. В случаях, когда система пожарной сигнализации не предна-значена для управления автоматическими установками пожаротушения, системами оповещения, дымоудаления и иными инженерными системами пожарной безопасности объекта, для подключения шлейфов пожарной сигнализации радиального типа напряжением до 60 В к приборам приемно-контрольным могут использоваться соединительные линии, выполняемые телефонными кабелями с медными жилами комплексной сети связи объекта при условии выделения каналов связи. При этом выделенные сво-бодные пары от кросса до распределительных коробок, используемых при монтаже шлейфов пожарной сигнализации, как правило, следует распола-гать группами в пределах каждой распределительной коробки и маркиро-вать красной краской.
- 12.61. Соединительные линии, выполненные телефонными и контрольными кабелями, должны иметь резервный запас жил кабелей и клемм соединительных коробок не менее чем по 10 %,.
- 12.62. Шлейфы пожарной сигнализации радиального типа, как правило, следует присоединять к приборам приемно-контрольным пожарным посредством соединительных коробок, кроссов. Допускается шлейфы пожарной сигнализации радиального типа подключать непосредственно к пожарным приборам, если информационная ёмкость приборов не превы-шает 20 шлейфов.
- 12.63. Шлейфы пожарной сигнализации кольцевого типа следует выполнять самостоятельными проводами и кабелями связи, при этом начало и конец кольцевого шлейфа необходимо подключать к соответствующим клеммам прибора приемноконтрольного пожарного.
- 12.64. Диаметр медных жил проводов и кабелей должен быть определен из расчета допустимого падения напряжения, но не менее 0,5 мм.
- 12.65. Линии электропитания приборов приемно-контрольных и приборов пожарных управления, а также соединительные линии управления автоматическими установками пожаротушения, дымоудаления или оповещения следует выполнять самостоятельными проводами и кабелями. Не допускается их прокладка транзитом через взрывоопасные и пожароопасные помещения (зоны). В обоснованных случаях допускается про-кладка этих линий через пожароопасные помещения (зоны) в пустотах строительных конструкций класса КО или огнестойкими проводами и кабелями либо кабелями и проводами, прокладываемыми в стальных трубах по ГОСТ 3262.
- 12.66. Не допускается совместная прокладка шлейфов и соединительных линий пожарной сигнализации, линий управления автоматическими установками пожаротушения и оповещения с напряжением до 60 В с линиями напряжением 110 В и более в одном коробе, трубе, жгуте, замкнутом канале строительной конструкции или на одном лотке. Совместная прокладка указанных линий допускается в разных отсе-ках коробов и лотков, имеющих сплошные продольные перегородки с пре-делом огнестойкости 0,25 ч из негорючего материала.
- 12.67. При параллельной открытой прокладке расстояние от проводов и кабелей пожарной сигнализации с напряжением до 60 В до силовых и осветительных кабелей должно быть не менее 0,5 м.

Допускается прокладка указанных проводов и кабелей на расстоянии менее 0,5 м от силовых и осветительных кабелей при условии их экранирования от электромагнитных наводок.

Допускается уменьшение расстояния до 0,25 м от проводов и кабе-лей шлейфов и соединительных линий пожарной сигнализации без защиты от наводок до одиночных осветительных проводов и контрольных кабелей.

- 12.68. В помещениях, где электромагнитные поля и наводки превышают уровень, установленный ГОСТ 23511, шлейфы и соединительные линии пожарной сигнализации должны быть защищены от наводок.
- 12.69. При необходимости защиты шлейфов и соединительных линий пожарной сигнализации от электромагнитных наводок следует применять экранированные или неэкранированные провода и кабели, прокладываемые в металлических трубах, коробах и т. д. При этом экранирующие элементы должны быть заземлены.
- 12.70. Наружные электропроводки систем пожарной сигнализации следует, как правило, прокладывать в земле или в канализации. При невозможности прокладки указанным способом допускается их прокладка по наружным стенам зданий и сооружений, под навесами, на тросах или на опорах между зданиями вне улиц и дорог в соответствии с требованиями ПУЭ.
- 12.71. Основную и резервную кабельные линии электропитания систем пожарной сигнализации следует прокладывать по разным трассам, исключающим возможность их одновременного выхода из строя при загорании на контролируемом объекте. Прокладку таких линий, как правило, следует выполнять по разным кабельным сооружениям. Допускается параллельная прокладка указанных линий по стенам помещений при расстоянии между ними в свету не менее 1 м.

Допускается совместная прокладка указанных кабельных линий при условии прокладки хотя бы одной из них в коробе (трубе), выполненной из негорючих материалов с пределом огнестойкости 0,75 ч.

12.72. Шлейфы пожарной сигнализации целесообразно разбивать на участки посредством соединительных коробок.

В конце шлейфа рекомендуется предусматривать устройство, обеспечивающее визуальный контроль его включенного состояния (например, устройство с проблесковым сигналом отличным от красного цвета с частотой проблескового свечения 0,1-0,3 Гц.), а также соединительную коробку или иное коммутационное устройство для подключения оборудования для оценки состояния системы пожарной сигнализации, которые необходимо устанавливать на доступном месте и высоте.

13. ВЗАИМОСВЯЗЬ СИСТЕМ ПОЖАРНОЙ СИГНАЛИЗАЦИИ С ДРУГИМИ СИСТЕМАМИ, ТЕХНОЛОГИЧЕСКИМ И ЭЛЕКТРОТЕХНИЧЕСКИМ ОБОРУДОВАНИЕМ ЗДАНИЙ И СООРУЖЕНИЙ

- 13.1. Аппаратура системы пожарной сигнализации должна формировать команды на управление автоматическими установками пожаротушения или дымоудаления или оповещения о пожаре или управления инженерным оборудованием объектов при срабатывании на менее двух пожарных извещателей, расстояние между которыми в этом случае должно быть не более половины нормативного, определяемого по таблицам 5-8 соответственно.
- 13.2. Формирование сигналов управления системами оповещения 1, 2, 3 типа по НПБ 104, а также технологическим, электротехническим и другим оборудованием, блокируемым системой пожарной сигнализации, допускается осуществлять при срабатывании одного

пожарного извещателя. При этом рекомендуется применять оборудование, реализующее функции, повышающие достоверность обнаружения пожара (например, перезапрос состояния пожарных извещателей).

- 13.3. Для формирования команды управления по п.13.1 в защищаемом помещении или зоне должно быть не менее:
- 3-х пожарных извещателей при включении их в шлейфы двухпороговых приборов или в адресные шлейфы или в 3-и независимых радиаль-ных шлейфа однопороговых приборов; 4-х пожарных извещателей при включении их в 2 шлейфа однопоро-говых приборов по 2 извещателя в каждый шлейф.

Примечание. Однопороговый прибор - прибор, который выдаёт сигнал "Пожар" при срабатывании одного пожарного извещателя в шлейфе. Двухпороговый прибор - прибор, который выдаёт сигнал "Пожар 1" при срабатывании одного пожарного извещателя и сигнал "Пожар 2" при срабатывании второго пожарного извещателя в том же шлейфе.

- 13.4. Вывод сигналов о срабатывании пожарной сигнализации по со-гласованию с территориальными органами управления Государственной противопожарной службы субъектов Российской Федерации и наличии технической возможности рекомендуется осуществлять по выделенному в установленном порядке радиоканалу или другим способом на ЦУС ("01") Государственной противопожарной службы.
- 13.5. Рекомендуется запуск системы дымоудаления осуществлять от дымовых пожарных извещателей, в том числе и в случае применения на объекте спринклерной системы пожаротушения.
- 13.6. Не допускается одновременная работа в защищаемых помещениях систем автоматического пожаротушения (газовых, порошковых и аэрозольных) и дымозащиты

14. ЭЛЕКТРОПИТАНИЕ СИСТЕМ ПОЖАРНОЙ СИГНАЛИЗАЦИИ И УСТАНОВОК ПОЖАРОТУШЕНИЯ

- 14.1. По степени обеспечения надежности электроснабжения элек-троприемники автоматических установок пожаротушения и систем пожарной сигнализации следует относить к I категории согласно Правилам устройства электроустановок, за исключением электродвигателей компрессора, насосов дренажного и подкачки пенообразователя, относящихся к III категории электроснабжения, а также случаев, указанных в п.п.14.3, 14.4.
- 14.2. Питание электроприемников следует осуществлять согласно ПУЭ с учетом требований п.п.14.3, 14.4.
- 14.3. При наличии одного источника электропитания (на объектах III категории надежности электроснабжения) допускается использовать в качестве резервного источника питания электроприемников, указанных в п. 14.1, аккумуляторные батареи или блоки бесперебойного питания, которые должны обеспечивать питание указанных электроприемников в дежурном режиме в течение 24 часов и в режиме "Тревога" не менее 3 ч.
- 14.4. При отсутствии по местным условиям возможности осуществлять питание электроприемников, указанных в п. 14.1, от двух независимых источников допускается осуществлять их питание от одного источника от разных трансформаторов двухтрансформаторной подстанции или от двух близлежащих однотрансформаторных

подстанций, подключенных к разным питающим линиям, проложенным по разным трассам, с устройством автоматического ввода резерва, как правило, на стороне низкого напряжения.

- 14.5. Место размещения устройства автоматического ввода резерва централизованно на вводах электроприемников автоматических установок пожаротушения и системы пожарной сигнализации или децентрализованно у электроприемников I категории надежности электроснабжения определяется в зависимости от взаиморасположения и условий прокладки питающих линий до удалённых электроприемников.
- 14.6. Для электроприемников автоматических установок пожаротушения I категории надежности электроснабжения, имеющих включаемый автоматически технологический резерв (при наличии одного рабочего и одного резервного насосов), устройство автоматического ввода резерва не требуется.
- 14.7. В установках водопенного пожаротушения в качестве резервного питания допускается применение дизельных электростанций.
- 14.8. В случае питания электроприемников автоматических установок пожаротушения и системы пожарной сигнализации от резервного ввода допускается при необходимости обеспечивать электропитание указанных электроприемников за счет отключения на объекте электроприемников II и III категории надежности электроснабжения.
- 14.9. Защиту электрических цепей автоматических установок пожа-ротушения и системы пожарной сигнализации необходимо выполнять в соответствии с ПУЭ. Не допускается устройство тепловой и максимальной защиты в цепях управления автоматическими установками пожаротушения, отключение которых может привести к отказу подачи огнетушащего вещества к очагу пожара.

15. ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ И ЗАНУЛЕНИЕ. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 15.1. Элементы электротехнического оборудования автоматических установок пожаротушения и системы пожарной сигнализации должны удовлетворять требованиям ГОСТ 12.2.007.0 по способу защиты человека от поражения человека электрическим током.
- 15.2. Защитное заземление (зануление) электрооборудования автоматических установок пожаротушения и системы пожарной сигнализации должно быть выполнено в соответствии с требованиями ПУЭ, СНиП 3.05.06, ГОСТ 12.1.030 и технической документацией завода-изготовителя.
- 15.3. Устройства местного пуска автоматических установок пожаротушения должны быть ограждены от случайного доступа и опломбированы, за исключением устройств местного пуска, установленных в помещениях станции пожаротушения или пожарных постов.
- 15.4. При использовании для защиты различных объектов радиоизотопных дымовых пожарных извещателей должны быть соблюдены требования радиационной безопасности, изложенные в НРБ-99, ОСП-72/87.

16. НОРМАТИВНЫЕ ССЫЛКИ

В настоящих нормах использованы ссылки на следующие документы:

ГОСТ 2.601-95 ЕСКД. Эксплуатационные документы.

ГОСТ 9.032-74 ЕСЗКС. Покрытия лакокрасочные. Группы, технические требования и обозначения.

ГОСТ 12.0.001-82 ССБТ. Основные положения.

ГОСТ 12.0.004-90 ССБТ. Организация обучения безопасности труда. Общие положения.

ГОСТ 12.1.004-91 Пожарная безопасность. Общие требования.

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

ГОСТ 12.1.019-79 ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты.

ГОСТ 12.1.030-81 ССБТ. Электробезопасность. Защитное заземление, зануление.

ГОСТ 12.1.033-81 ССБТ. Пожарная безопасность. Термины и определения.

ГОСТ 12.1.044-89 ССБТ. Пожаровзрывоопасность веществ и мате-риалов. Номенклатура показателей и методы их определения.

ГОСТ 12.2.003-91 ССБТ. Оборудование производственное. Общие требования безопасности.

ГОСТ 12.2.007.0-75 ССБТ. Изделия электротехнические. Общие требования безопасности.

ГОСТ 12.2.047-86 ССБТ. Пожарная техника. Термины и определения.

ГОСТ 12.3.046-91 ССБТ. Установки пожаротушения автоматические. Общие технические требования.

ГОСТ 12.4.009-83 ССБТ. Пожарная техника для защиты объектов. Основные виды, размещение и обслуживание.

ГОСТ 12.4.026-76 ССБТ. Цвета сигнальные и знаки безопасности.

ГОСТ 3262-75 Трубы стальные водогазовые. Технические условия.

ГОСТ 8732-78 Трубы стальные бесшовные горячедеформированные. Сортамент.

ГОСТ 8734-75 Трубы стальные бесшовные холоднодеформированные. Сортамент.

ГОСТ 10704-91 Трубы стальные электросварные прямошовные. Сортамент.

ГОСТ 14202-69 Трубопроводы промышленных предприятий. Опознавательная окраска, предупреждающие знаки и маркировочные щитки.

ГОСТ 14254-96 Степени защиты, обеспечиваемые оболочками.

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия клима-тических факторов внешней среды.

ГОСТ 21130-75 Изделия электротехнические. Зажимы заземляющие и знаки заземления. Конструкция и размеры.

ГОСТ 23511-79 Радиопомехи индустриальные от электрических устройств,

эксплуатируемых в жилых домах или подключаемых к их элек-трическим сетям. Нормы и методы измерений.

ГОСТ 27331-87 Пожарная техника. Классификация пожаров.

ГОСТ 28130-89 Пожарная техника. Огнетушители, установки пожаротушения и пожарной сигнализации. Обозначения условные графические.

ГОСТ Р 50680-94 Установки водяного пожаротушения автоматические. Общие технические требования. Методы испытаний.

ГОСТ Р 50800-95 Установки пенного пожаротушения автоматические. Общие технические требования. Методы испытаний.

ГОСТ Р 50588-93 Пенообразователи для тушения пожаров. Общие технические требования и методы испытаний.

ГОСТ Р 50969-96 Установки газового пожаротушения автоматиче-ские. Общие технические требования. Методы испытаний.

ГОСТ Р 51043-97 Установки водяного и пенного пожаротушения автоматические. Оросители спринклерные и дренчерные. Общие техниче-ские требования. Методы

испытаний.

ГОСТ Р 51046-97 Техника пожарная. Генераторы огнетушащего аэрозоля. Типы и основные параметры.

ГОСТ 51091-97 Установки порошкового пожаротушения автоматические. Типы и основные параметры.

ГОСТ Р 51737 - 2001 Установки водяного и пенного пожаротушения автоматические.

Муфты трубопроводные разъемные. Общие технические требования. Методы испытаний.

НПБ 03-93 Порядок согласования органами государственного по-жарного надзора Российской Федерации проектно-сметной документации.

НПБ 51-96 Составы газовые огнетушащие. Общие технические тре-бования. Методы испытаний.

НПБ 54-96 Установки газового пожаротушения автоматические. Модули и батареи. Общие технические требования. Методы испытаний.

НПБ 56-96 Установки порошкового пожаротушения импульсные. Временные нормы и правила проектирования и эксплуатации.

НПБ 57-97 Приборы и аппаратура автоматических установок пожаротушения и пожарной сигнализации. Помехоустойчивость и помехоэмиссия. Общие технические требования. Методы испытаний.

НПБ 58-97 Системы пожарной сигнализации адресные. Общие тех-нические требования. Методы испытаний.

НПБ 60-97 Пожарная техника. Генераторы огнетушащего аэрозоля. Общие технические требования. Методы испытаний.

НПБ 65-97 Извещатели пожарные оптико-электронные. Общие тех-нические требования. Методы испытаний.

НПБ 66-97 Извещатели пожарные автономные. Общие технические требования. Методы испытаний.

НПБ 70-98 Извещатели пожарные ручные. Общие технические тре-бования. Методы испытаний.

НПБ 71-98 Извещатели пожарные газовые. Общие технические тре-бования. Методы испытаний.

НПБ 72-98 Извещатели пожарные пламени. Общие технические тре-бования. Методы испытаний.

НПБ 75-98 Приборы приемно-контрольные пожарные. Приборы управления пожарные. Общие технические требования. Методы испытаний.

НПБ 80-99 Модульные установки пожаротушения тонкораспылен-ной водой автоматические. Общие технические требования. Методы испы-таний.

НПБ 81-99 Извещатели пожарные дымовые радиоизотопные. Общие технические требования. Методы испытаний.

НПБ 85-00 Извещатели пожарные тепловые. Общие технические требования. Методы испытаний.

НПБ 104-95 Проектирование систем оповещения людей о пожаре в зданиях и сооружениях.

НПБ 110-99 Перечень зданий и сооружений, помещений и оборудования, подлежащих защите автоматическими установками тушения и об-наружения пожара.

НПБ 105-95 Определение категорий помещений и зданий по взрыво-пожарной и пожарной опасности.

НПБ 155-96 Пожарная техника. Огнетушители переносные. Основные показатели и методы испытаний.

НПБ 170-98. Порошки огнетушащие общего назначения. Общие технические требования. Методы испытаний.

ПУЭ-98 Правила устройства электроустановок.

СНиП 2.04.01-85 Внутренний водопровод и канализация зданий.

СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.

СНиП 2.04.05-91 Отопление, вентиляция и кондиционирование воз-духа.

СНиП 3.05.05-84 Технологическое оборудование и технологические трубопроводы.

СНиП 3.05.06-85 Электротехнические устройства.

СНиП 10-01-94 Система нормативных документов в строительстве. Основные положения.

СНиП 21 - 01-97 Пожарная безопасность зданий и сооружений.

СНиП 23-05-95 Естественное и искусственное освещение.

ПБ 10-115-96 Правила устройства и безопасной эксплуатации сосудов, работающих под давлением.

ВСН 25.09.66-85 Правила разработки проектов производства работ на монтаж автоматических установок пожаротушения и установок охран-ной, пожарной и охранно-пожарной сигнализации.

BCH 116-87 Инструкция по проектированию линейно-кабельных сооружений связи. НРБ-99 Нормы радиационной безопасности.

ОСП-72/87 Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучений. РД 34.21.122-87 Инструкция по устройству молниезащиты зданий и сооружений.